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Abstract—In human-robot collaborative tasks, incorporating
qualitative information provided by humans can greatly en-
hance the robustness and efficacy of robot state estimation.
We introduce an algorithmic framework to model qualitative
information as quantitative constraints on and between states.
Our approach, named Sequentially Constrained Hamiltonian
Monte Carlo, integrates Hamiltonian dynamics into Sequen-
tially Constrained Monte Carlo sampling. We are able to gen-
erate samples that satisfy arbitrarily complex, non-smooth and
discontinuous constraints, which in turn allows us to support a
wide range of qualitative information. We evaluate our approach
for constrained sampling qualitatively and quantitatively with
several classes of constraints. SCHMC significantly outperforms
the Metropolis-Hastings algorithm (a standard Markov Chain
Monte Carlo (MCMC) method) and the Hamiltonian Monte
Carlo (HMC) method, in terms of both the accuracy of
the sampling (for satisfying constraints) and the quality of
approximation. Compared to Sequentially Constrained Monte
Carlo (SCMC), which supports similar kinds of constraints,
our SCHMC approach has faster convergence rates and lower
parameter sensitivity.

I. INTRODUCTION

We consider the problem of leveraging numerous forms of
information for state estimation applications. A widely stud-
ied instance of this is the sensor fusion problem [10], which
merges information from multiple sensors and sources [17]
for estimating hidden states. We are interested in a related but
different setting - incorporating information from humans.

In a collaborative human-robot team, both the human(s)
and the robot(s) receive observations from the shared en-
vironment. There are several potential benefits to this, de-
scribed in Section II. The sensing capabilities of the human
complements that of a robot [12], often overcoming many of
the robot’s perceptual limitations [13] The human-supplied
qualitative information helps enhance the robustness of esti-
mation and reduce the uncertainty. For instance, information
from experienced human rescuers has been used to more
successfully predict the location of a target [1]. Furthermore,
the human can provide knowledge about the physical world
which facilitates corrections during state estimation [22].
Humans can provide qualitative descriptions [4] or high-level
instructions [26] to help a robot with task execution.

Qualitative information from the human can be provided
in several forms:

o A general description of a state that constrains the values

of the state.
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Fig. 1: Various forms of qualitative human-furnished information that
could be integrated into a state estimation framework. Our SCHMC
approach can support all these kinds of constraints, as we shall
demonstrate with our extensive examples.

— A human would highlight the “red" color in an
environment of flickering lights.

— A human would sketch a bounding perimeter for a
desired target to be in (Figure 1a).

o System Knowledge that constrains the relationship be-
tween two or more states.

— A human would know that two rigid objects should
not collide (Figure 1b).

— A human would know that a car cannot make a zero
radius turn.

o High-level abstraction that defines a structure over the
states.

— A human would say “the blue cube is next to the
red ball" in Figure 1c to refer to a picking position.

— A human would say that the temperature falls after
snowing while predicting temperature dynamics.

The diverse nature of qualitative information, from
sketches to numerical tolerances, makes it difficult to obtain
a unified description. Approximations are usually resorted
to so that numerical optimization can be applied to state
estimation [1, 22].

Our key insight, described in Section III, is to integrate a
wide range of qualitative information into quantitative models
via constraints in a graphical structure. In this paper, we
propose a general framework for this purpose. Our approach,
shown in Section IV, follows a Sequentially Constrained
Monte Carlo method [8] that allows for various kinds of
constraints which define nonlinear, non-smooth and complex
multi-modal problems. Also it uses adaptive Hamiltonian
Monte Carlo [11] that supports efficiency in problem solving
without requiring parameters for the steps, as needed for
Sequential Monte Carlo.

We demonstrate and evaluate our approach through several
interesting scenarios motivated by important applications,



outlined in Section V. Since our focus is on the mathematical
details and implementation of the underlying algorithm, we
use simulated examples of constrained sampling, filtering,
and static state estimation that are easy to visualize. This
also helps us highlight the versatility of our approach by
demonstrating support for a number of different kinds of
constraints.

II. RELATED WORK

In a fusion framework, information is typically modeled as
a random variable, so a common way of presenting human
information is “soft data”, using a probability distribution [2].
In a human-robot team, a robot can convert a qualitative
description of the environment into a distribution to support a
search task [16, 24]. Qualitative spatial relations from humans
has been modeled into map generation for navigation [18].
A hand-sketched path and map has been used as a prior for
a robot’s simultaneous mapping and navigation [21].

Another approach of modeling qualitative information is
as a “hard constraint". For planning a shared task, a human
can generate a path shape as a topological constraint for the
robot’s planning and execution [25, 26]. Moreover, a lot of
physics-based knowledge can be modeled as constraints in
state estimation. The collision-free constraint for rigid bodies
is used in correcting state estimation of object positions [22].
Hard constraints enforce the relationship between states,
which reduces the uncertainty of state estimation [23], though
it does increase the difficulty of problem solving.

In solving a constrained nonlinear optimization problem,
sequential quadratic programming is a popular tool [22] that
decomposes a problem into a sequence of subproblems and
solves them iteratively. It requires the objective and the
constraints to be twice differentiable, which greatly limits the
support for constraints derived from qualitative information.
For example, a hand sketch in Figure la can be difficult
to convert into a mathematical description in a probabilistic
inference framework. The solution is determined by the initial
guess, and only local optimality is guaranteed.

One way to achieve global optimality is through Monte
Carlo simulation. Markov Chain Monte Carlo [5](MCMC)
is a computational technique that derives a set of samples to
approximate a probability distribution by modeling a Markov
Chain random walk. It recovers more information about a
distribution than only estimating an optimal solution [5].
Sequential Monte Carlo [6] introduces a set of samples that
form parallel Markov Chains from a sequence of bridging
distributions for complex multimodal distributions, which
applies to high dimensional spaces [20] and complex con-
straints [9]. Various transition kernels can be used in Sequen-
tial Monte Carlo [20]. Hamiltonian dynamics [19] have been
introduced as a more efficient alternative to the random walk
MCMC kernel for moving samples around. Therefore, we
use an adaptive Hamiltonian Monte Carlo [11](HMC) kernel
in a Sequentially Constrained Monte Carlo [8] framework for
our overall approach.

III. PROBLEM STATEMENT

Assume we have a set of observations O = {01, - ,on}
that is associated with a set of states X = {x1, - ,zx}.
In a problem that considers only quantitative information,
state estimation can usually be defined as a MAP (Maximum
Aposteriori Probability) problem, which is

X" =argmax P(X | O). (1)
X

We propose two types of qualitative information to model
human information - feature and relation.

o Feature informs a property of a state. Let f(z) < 0
when the constraint is satisfied.

« Relation informs a conditional relationship between
two states. Let f(xo | x1) < 0 when the constraint
is satisfied. Often, f(z2 | 1) and f(z1 | z2) are
both equivalent to a mutual relation f(z1,z2), which
is satisfied when f(z1,22) <O0.

Some examples of qualitative information are given below.

e The color is red. Assume the color is represented in HSV
space and the H value h € [0,180]. The information
“red color" indicates a feature that constrains the value
of state h to be in [0, 10] U [160, 180].

o The object is on the left hand side. Assuming the z-
coordinate on the left hand side is all negative, this
defines a feature that constrains the object location as
z <0.

e Ball one and ball two are rigid. Let s; be the estimated
center of ball one with radius r;. Let so be the center
of a ball with radius 7. If the two balls cannot collide,
we have |s; — s2| > r1 + 79 as a constraint.

o The point is inside a circle. Assume the circle is a unit
circle centered at the origin. This information implies
that given y, = should satisfy x — /1 — 32 < 0OA —z —
/1 —4? < 0. Similarly, given z, y should satisfy y —
VI—-22<0A-y—+vV1-—-22<0.

o The object is a square. Let s1, s2, 3, S4 be the estimated
corners of a square on a plane and r be the estimated
edge length of the square. By prior geometric knowl-
edge, we have |s1 —sa| =71, |sa—s3| =7, [ss—s4| =7
and |s4 — s1| = r as constraints.

e A human sketches a region. A human sketches a region
on a map that indicates where a target is, as in Figure
la. Let s be the estimated position of the target and R
be a human-sketched region. This information implies a
feature that requires s € R.

Both features and relations define “hard constraints" on
states to be estimated. In Figure 2, we use a graph structure
to illustrate how quantitative and qualitative information are
integrated. Each quantitative state is a node in the graph,
while each qualitative state is an edge. A self-edge to a state
defines a constraint that the state x should satisfy. A directed
edge from a state x; to another state zo defines a constraint
that state xo should satisfy, given state x.

Assume that states z1, x2 and x3 are estimated by obser-
vations 01, 0o and og respectively. Qualitative information
defines edges that connects nodes. f1(x1) defines a feature
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Fig. 2: Our underlying graph structure represents qualitative informa-
tion via constraints on individual states and between multiple states.

constraint on 1. f2(zs | 1) defines a relation constraint on
xo given x1. f3(x3 | x2) and f4(xy | 23) together define a
relation constraint on x5 and x3.

Let F = {f'}, denote the set of constraints on the set
of states X. When all states in X satisfy the constraints,
F(X) < 0. We can reformulate the problem as

X* =argmax P(X | O, F) = argmax P(X | O, F), (2)
X XF

where X' = {X € X | F(X) < 0}. The knowledge defines
constraints, which makes a subset X ¥ of all possible states
X walid. This reduces uncertainty in problem solving, which
is measured by conditional mutual information - I(X; F |
O)=H(X|0)—-H(X|O,F).

The layout in Figure 2 indicates that we could have
the state estimations running separately in parallel, which
generates an unconstrained distribution P(X | O). The qual-
itative constraints represented by F' are then introduced while
querying states from P(X | O, F). We rewrite P(X | O, F)
in terms of the unconstrained posterior P(X | O) and
constraints 1p(X).

_ P(X|0)1p(X)
P(X|O,F) = Txr P(X | g)dX 3)
in which — 1 F(X)<0 4
P ){0 F(X)>0 @

IV. SEQUENTIALLY CONSTRAINED
HAMILTONIAN MONTE CARLO

Markov Chain Monte Carlo (MCMC) can compute P(X |
O, F) in low dimensional cases. Sequentially Constrained
Monte Carlo [8] (SCMC) was proposed for high dimensional,
multi-modal, discontinuous cases. Considering the efficiency
issues of the inference problem, we introduce SCHMC, that
adds Hamiltonian dynamics [19] to SCMC. This incorpo-
ration is non-trivial, because for Hamiltonian dynamics in
the general MCMC, the performance is heavily dependent
on selecting the number and length of the steps [19]. This
property prevents it from fitting directly into a sequential
Monte Carlo structure, because bridging distributions might
require different parameters while selecting steps. Bridging
distributions denote a sequence of distributions that transition
from an unconstrained distribution to a fully constrained
distribution. We use a kernel obtained from No-U-Turn sam-
pling [11], that adaptively selects the step length and number
for Hamiltonian dynamics. Moreover, the performance of

SCMC depends on an adequate number of burn-in steps,
while the fast convergence of No-U-Turn sampling makes
SCHMC robust to the burn-in step selection. The MAP
problem defined in Equation (2) can be solved by finding
the sample with the highest posterior.

Instead of directly moving the samples toward the target
distribution P(X | O, F), SCMC constructs a sequence of
bridging distributions. Each two consecutive distributions are
similar enough that one can reach the other via a random
walk. The sequence of bridging distributions guides the
samples to move from the initial distribution to the target
distribution, as shown in Figure 3.

Dbridging distribution
I @ target distribution
O Qinitial distribution

(b) SCMC

@ target distribution
Qinitial distribution

(a) MCMC

Fig. 3: SCMC uses bridging distributions to guide the initial distribution
to the target, unlike MCMC which uses an unguided random walk.

A probit function is used to approximate the deformation
from no constraint to an indicator function (hard constraint).
We use (—7Cr (X)), in which ® is an exponential function
and Cr(X) is a deviation function. The deviation function
Cr(X) measures how a state S deviates from a constraint
F. Tt satisfies

. F(X) <0 = Cp(X) <0:

e F(X)>0 = Cr(X)>0.

We usually directly choose Cr(X) = F(X). But choosing
a Cr(X) that provides local monotonicity can significantly
improve convergence rate. As in Equation (5), as 7 increases,
O (—7Cpr (X)) gradually converges to 1x(X).

Tim ®(=7Cp (X)) = Lr(X). 5)

Tuning 7 from 0 to oo transforms the function shape from
unconstrained to fully constrained, as shown in Figure 4 '.
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Fig. 4: The shapes of our probit function with different values of ~

Thus, a sequence of monotonically increasing 7, i.e.
{rn}loand 0 = 70 < 74 < --+ < 77 = oo, determines

'In practice, how big T needs to be to approximate co depends on the
limits of precision and the nature of the problem.



a sequence of bridging distributions {7, (x)} that transits
from P(z | O) to P(z | O, F).

This sequence of bridging distributions is used by Sequen-
tially Constrained Monte Carlo [8]. As mentioned before,
applying Hamiltonian dynamics rather than random walks
for transitioning between bridging distributions leads to Se-
quentially Constrained Hamiltonian Monte Carlo (SCHMC),
outlined in Algorithm 1. We present the algorithm through
the flow of evolutionary computation [6], which consists of
initialization, promotion, correction, selection and mutation.

Algorithm 1 SCHMC (P(X | O), F)
1: INITIALIZATION: Xo ~ P(X | O), 79+ 0,t+ 0
2: while NOTCONVERGED(X;, P(X | O, F)) do
3 PROMOTION 7411 ¢~ FINDNEXT(7;, X; )
4: CORRECTION: Wi < CALCWEIGHT(X})
5
6

SELECTION: X; ¢~ RESAMPLE(W; 41, X})
MUTATION: X;+1 ¢ HAMILTONIANKERNEL(XY,
7T7't+1 (.17))

7: t+—t+1
return X,

In INITIALIZATION, a set of samples is sampled from
an unconstrained distribution P(X | O). The samples are
evolved iteratively until they converge to a fully constrained
distribution P(X | O, F). In PROMOTION, FINDNEXT()
is called to calculate a new 7y from the current 7, and
the sample set X,;. The new parameter 7, implies a new
bridging distribution 7, ,. In CORRECTION, weights of all
the samples W, are calculated by CALCWEIGHT(). The
weight w! ! of a particle z, is obtained by

wffl =0 ((Tt+1 — Tt)CF(.I:L)) . (6)

In SELECTION, RESAMPLE() is called to avoid particle
degeneracy. Samples with high weights, i.e. high proba-
bilities, are more likely to be resampled. In MUTATION,
HAMILTONIANKERNEL() is called to move samples toward
a new bridging distribution 7., ,. This runs till samples con-
verge, which is checked by NOTCONVERGED(). In practice,
convergence occurs when 7 reaches a large enough value.

Effective Sampling Size (ESS) [20] measures the degener-
acy of a set of samples.

(Ziwt)
RS NI
in which w! is calculated by Equation (6). It is widely used
in Sequential Monte Carlo to avoid the particle degeneracy
problem, where most samples are located in a low probability
region. In our case, a low ESS implies that many samples
do not satisfy the constraint, therefore they have near zero
probabilities. In order to guarantee that enough samples
satisfy the constraint in the next bridging distribution, we use
ESS; to determine the promoted step length in PROMOTION.
We choose a threshold of the effective sampling size fggg
required in the new bridging distribution, for instance, half of
the number of samples N/2. The value of 7441 is chosen as

(7

one that satisfies ESS; > fgss in FINDNEXT(). RESAMPLE()
is called to avoid particle degeneracy, following a common
resampling procedure in Sequential Monte Carlo [7]. Resam-
pling does not change the sample weights.

We use HAMILTONIANKERNEL to move samples to-
ward a bridging distribution, following Hamiltonian Monte
Carlo [19] (HMC). Hamiltonian Monte Carlo introduces
dynamical evolution that avoids a random walk for greater ef-
ficiency. In order to sample from a random variable = defined
by p.d.f P(z), Hamiltonian dynamics is introduced where the
system state is « and the momentum is an auxiliary variable
g. The resulting system energy H(z,q) = U(x) + K(q) de-
termines the dynamical evolution of = and ¢, which is called
Hamiltonian dynamics. U(z) is the potential energy, which
is determined by the state x. K(q) is the kinetic energy,
which is determined by the momentum ¢. The dynamics
equations are represented by fl—f = %—Z and % = —%—f.
Because the Hamiltonian dynamics satisfies the property of
detailed balance [19] that guarantees reversibility, it can be
used in MCMC to generate samples (z, g) from a canonical
distribution ®(—H (z, ¢)). If the potential energy is explicitly
defined as U(z) = — log 7(z), and the kinetic energy as
K(q) = $¢"M~'q, we can obtain samples for 7(z) by
sampling from ®(—H(x,q)) and discarding ¢ from each
augmented point.

Algorithm 2 HAMILTONIANKERNEL (z, 7T7—t+1(.1') )

1: g~ N(0,M); (2°,¢°) « (2,9)
U (z°
A
3: form=1,---,M do )
. -1 OK(q™ ")
4. l'm — l'm + EW
. —1 q
5 q" g 6;(6;)7
xr
6 M g — 57—
7. if  UNIFORM([0,1]) < min(l, eH(vaqM)—H(wO,qo))
then
8: xz M
return

It is known that the performance of HMC depends on
selecting step number and step size [19] according to a target
distribution. In order to guarantee performance in various
bridging distributions, we use an adaptive HMC, the No-U-
Turn sampler [11]. It is a variant of HMC that estimates a
step size according to a given problem and adaptively selects
a step number that guarantees ergodicity, which ensures that
the samples avoid being trapped in a subset of the space [19].

V. EXPERIMENTS

We evaluate the performance of our method for sequen-
tially constrained sampling, both quantitatively and qualita-
tively. Additionally, we demonstrate how it can be used for
incorporating known information in the form of arbitrary con-
straints into filtering and state estimation problems. Note that
while our work is strongly motivated by robotic applications
that benefit from knowledge integration, the purpose of this
paper is to present an algorithm for constrained sampling.
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Fig. 5: The SCHMC algorithm is used to sample along an arbitrary non-linear manifold with functional form f(z) = 225 +3z%—22% — 422 +-x sin .
The seed points are generated from a uniform distribution in the bounding area. As expected, as the value of 7 increases and the weight of the

constraint increases, the samples track the manifold more closely.

Therefore, we focus our quantitative evaluation on the perfor-
mance for sampling. For the other applications, which have
their own algorithms and task-specific performance criteria,
we show how our method can be used in conjunction with
such algorithms to accommodate arbitrary constraints.

A. Sequentially Constrained Sampling

SCHMC follows a sequence of bridging distributions that
transit from an unconstrained distribution to a fully con-
strained distribution. As the constraint is gradually tightened
by increasing 7, samples are driven toward a constraint man-
ifold that follows the distribution. Figure 5 exemplifies how
samples are moved toward an arbitrary non-linear manifold,
starting from an unconstrained uniform distribution.

(¢) 3D torus

(d) Multiple nonconvex polygons

Fig. 6: Various examples of constrained sampling using SCHMC. For
Figure 6b the samples are drawn from a Gaussian distribution, while
for the others they are drawn from a uniform distribution.

We use two metrics to evaluate the quality of our sampling
procedure. The first metric indicates the accuracy of the
sampling, i.e. how well the samples satisfy the constraints.
For a given constraint f(z) = 0 which we want each
sample to satisfy, the deviation of a given sample 2’ from
the constraint, or the error, is |f(z’)|. For a set of samples
X obtained from some sampling procedure, we use the root

mean squared error (RMSE) over X as our metric, which is
basically

> 1fE))? )

z'eX

RMSE(X) — \/ ﬁ

A lower RMSE implies that the set of points more closely
matches the target distribution, so the lower the better.

The other metric indicates the diversity of the sampling,
i.e. how well distributed the samples are over high-probability
regions. We use the Effective Sampling Size (ESS), which
was defined earlier in Equations (7) and (6). For this metric,
rather than using the weights derived from the sampling, we
strictly enforce the constraint. Therefore samples which do
not satisfy the constraint have weight close to 0 and the ones
that do have weight close to 1. A higher ESS implies that
more of the samples satisfy the constraint and they are not
distributed in low probability subspaces.

In our experiments, the samplings of MCMC and HMC
converge well in visible low-dimensional problems. In high-
dimensional problems, it is harder to converge to a target dis-
tribution as shown in Figure 3. Figure 7 shows the MRSE and
ESS of samples generated from four different approaches,
HMC, MCMC, SCMC and SCHMC. The problem is of an
8D multivariate normal distribution subject to a constraint
as in Figure 13a. It is required that the Euclidean distances
between subvectors of a state are constant, which defines
a few disjoint feasible subspaces. HMC fails to converge
well in such a discontinuous constrained high dimensional
problem, which is manifested as high RMSE in Figure 7a.
Though the samples by MCMC converge as well as those by
SCMC and SCHMC, the diversity of samplings by MCMC
is not good, which is shown by a low ESS in Figure 7b.

We evaluate the accuracy of SCHMC for constrained
sampling over various classes of functions. For each case
we have a function of the form f(z) = 0 and we compute
the RMSE of 500 samples from an underlying uniform
distribution. The results are shown in Figure 8. Following
are the descriptions of each function class:

e Polynomial : f([z,y]) =y — (5x® — 322 + 4z — 1)

o Sinusoidal : f([z,y]) = y — (sin2zcos3x — 2sinzcosdx)
o Exponential : f([z,y]) =y — e(32%-2)
e Combined : f([z,y]) =y — (ze*™ + cos(sinz))
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Fig. 7: In an 8D problem subject to discontinuous constraints, HMC
fails to converge to samples in feasible subspaces, which leads to high
RMSE in Figure 7a. Furthermore, the diversity of sampling with MCMC
is much worse than with SCMC and SCHMC. Thus the ESS of MCMC
in Figure 7b is much lower than that of SCMC and SCHMC. The results
are averaged over 10 different runs.
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Fig. 8: As T increases, the root mean squared error or the RMSE of
our SCHMC approach, as defined in Equation (8), converges to a small
number. The combined function needs a higher rmax to reach that level
of convergence probably because it is more complex than the others.

2
o Torus: f([z,y,2]) = (2 — 2 +y2> +22-1
e Rectangle : This uses the scenario of Figure 13b.

For instance, for the Torus problem, we define the deviation
function mentioned earlier as

2
Crllzy ) = (2= V@ +y?) +22 =1 ©

2
Only when (2 — V2 + y2) + 22 — 1 = 0 are the samples
constrained to the torus.
We use a 3D problem in Figure 6¢ and an 8D problem in
Figure 13a to compare SCMC with SCHMC. As in Figure 9a
and 9c, the ESS of both SCMC and SCHMC grow by almost
the same ratio as 7 increases. In the 3D problem, SCHMC
takes less time to converge than SCMC. The efficiency
improvement is more significant in the 8D problem.

B. Filtering

Markov Chain Monte Carlo techniques have been used
in filtering applications, for tracking targets with complex
state distributions [3, 14]. By modeling prior information
as state constraints, SCHMC can be integrated into filtering
problems [15]. For high-dimensional state spaces, rejection
sampling may not be useful due to high rejection rate.
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Fig. 9: Compared to SCMC, SCHMC achieves a similar ESS with
quicker convergence to the constraint.
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Fig. 10: An example of filtering with SCHMC. The purple trajectory
is due to the noisy motion model, and it violates several of the
system constraints. The corrected trajectory is the one with maximum
aposteriori probability given the motion model trajectory, subject to all
constraints.

We demonstrate a simple application of filtering with
SCHMC in Figure 10. We have a point robot moving in an
R? world with obstacles. There is a given motion model for
the robot, with the following constraints:

o The robot stays within the blue zone.

e The robot has a minimum clearance from all obstacles.

o The robot has a maximum velocity, i.e. distance between
successive waypoints, assuming unit timesteps

We choose a simple example with simplifying assumptions
for convenience of implementation and ease of visualization.
The usage of SCHMC for incorporating information as
constraints generalizes to more complex problems in filtering
(higher order state spaces, more complicated dynamics).

C. Pose Estimation

Another important application where prior information is
useful is in estimating the pose of a system. The constraints
can represent physics-based knowledge, geometric informa-



(a) Correction required (b) Correction not required

Fig. 11: Correctly estimated positions of ellipses with a non-collision
constraint. Figure 11a shows how the estimation is corrected to satisfy
the non-collision constraint. Figure 11b shows how the estimation need
not be corrected as the non-collision constraint is already satisfied.

(a) Corrected centers and rotations. (b) Corrected endpoints.

Fig. 12: Correctly estimated positions of polygons with a non-collision
constraint. In Figure 12a, if the shapes of the polygons are known,
the centers and rotations of polygons are corrected to satisfy the
constraint. In Figure 12b, if the shapes are unknown, end-points of
polygons are corrected to satisfy the constraint. This is a much higher-
dimensional problem (24 dimensions).

tion, rigid body assumptions and so on. We demonstrate a
number of examples motivated by real-world applications.
We work with state spaces of higher dimensions, but which
can be visualized in 2D and 3D.

Our first set of examples involves estimating the pose of
objects on a 2D plane. In Figure 11 we show a simple exam-
ple of using the no-collision constraint to estimate ellipse po-
sitions. We then demonstrate how SCHMC can estimate the
poses of multiple polygons in Figure 12, subject to a similar
collision-free constraint. There are two variants depending
on the outline of the polygon being known (Figure 12a) or
unknown (Figure 12b). Besides non-collision constraints, we
also show how SCHMC can support geometric knowledge-
based constraints, as in Figure 13, such as the edge lengths
of the polygon (Figure 13a) or that the polygon is a rectangle
(Figure 13b).

Now we discuss estimating the 6-DOF pose of 3D objects
subject to constraints from physics-based knowledge. This is
a very relevant aspect of robust visual pose estimation for
robotics applications. The first example, shown in Figure 14,
estimates the pose of a single cylinder, subject to the con-
straint of being upright and on the surface of a plane. The
second example, shown in Figure 15, estimates jointly the
poses of a cylinder and a cuboid, subject to the constraints
of the previous example, and additionally the constraint that
they do not intersect each other.
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(a) Edge lengths given (b) Object known to be rectangle

Fig. 13: Correctly estimated end-points of a polygon with a shape
constraint. In Figure 13a, if the lengths of edges are given, the
estimated end-points are corrected to satisfy edge-length constraints.
In Figure 13b, if the polygon is known to be a rectangle, the estimations
are corrected to satisfy a parallel edge constraint, which enforces the
lengths of non-adjacent edges to be equal.
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Fig. 14: Corrected pose estimation of a cylinder on a table. The left
subfigure shows poses of cylinders from a set of noisy observations.
The center subfigure shows an estimated pose by simply averaging all
the observations. The right subfigure shows an estimated pose subject
to the cylinder being upright and on the table.

VI. CONCLUSION

In this paper, we present SCHMC for sampling from
arbitrary distributions, subject to a wide range of constraints.
This enables us to model human information into quantitative
state estimation problems. SCHMC introduces Hamiltonian
dynamics to a Sequentially Constrained Monte Carlo tech-
nique, in which a sequence of bridging distributions are
created to guide samples from an unconstrained distribution
to a fully constrained distribution. Hamiltonian dynamics
is used in transiting between bridging distributions, which
accelerates the convergence rate while maintaining sampling
quality, especially in a high-dimensional space (as in state
estimation problems). Also, the accelerated convergence rate
makes SCHMC robust to the selection of burn-in steps for
transiting between bridging distributions. We choose the No-
U-Turn sampler to simulate the Hamiltonian dynamics so that
parameters are adaptively tuned. The parameter-free nature of
SCHMC makes it adaptive to different bridging distributions
in the sampling process.

Our work focuses on the algorithm for constrained sam-
pling and our experiments and evaluation is done keeping
that in mind. Considering the original motivation of the
paper, the primary direction of future work is to use SCHMC
for modeling human information in a real-world human-
robot collaborative task and demonstrate how the system
performance improves as a result.
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