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Abstract

For real-world robotic systems, the ability to efficiently obtain motion
plans of good quality over a diverse range of problems, is crucial.
Large, dense motion-planning roadmaps can typically ensure the
existence of such good quality solutions for most problems.

This thesis proposes an algorithmic framework for anytime planning
on large, dense motion-planning roadmaps. The size of the roadmap
graph creates difficulties for most existing approaches to graph-based
planning algorithms. This is compounded by the specific challenges
for certain motivating domains like manipulation, where collision
checks and therefore edge evaluations are extremely expensive, and
the configuration space is typically high-dimensional. We have two key
insights to deal with these challenges.

Firstly, we frame the problem of anytime motion planning on
roadmaps as one of searching for the shortest path over increasingly
dense subgraphs of the entire roadmap graph. We study the space
of all subgraphs of the roadmap graph, and consider densification
strategies which traverse this space, selecting subgraphs along the
way to be searched. We also analyse the behaviour of these strategies
across the subgraph space, as well as the tradeoff between worst-case
search effort and bounded suboptimality.

Secondly, we develop an anytime roadmap planning algorithm
that is efficient with respect to collision checks for obtaining the first
feasible path and successively shorter feasible paths. We use a model
that computes the probability of unevaluated configurations being
collision-free, and is updated with collision checks. Our algorithm,
which we call POMP or Pareto-optimal Motion Planner, searches for
paths which are Pareto-optimal in path length and collision likelihood.
It gradually prioritizes path length, eventually finding the shortest
feasible path.

We empirically evaluate both our ideas on a number of simulated
cases, against contemporary motion planning algorithms, and show
favourable performance over a range of problems.
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1
Introduction

Motion planning is one of the fundamental aspects of robotics. Given
some desired start and goal configuration of the robot, the motion
planning problem seeks to obtain a sequence of discrete movements
that satisfy the physical constraints of the robot and the environment
and (maybe) additionally optimizes some objective function (see Fig.
1.1 for some examples). There are multiple reference texts devoted
to motion planning [Latombe, 2012, LaValle, 2006] and we will not
re-invent the wheel for the purpose of this thesis.

(a) http://users.wpi.edu/~dberenson

(b) http://coppeliarobotics.com

(c) http://ompl.kavrakilab.org

Figure 1.1: Three typical ex-
amples of motion planning
problems - (a) a point robot in
a 2D world (b) the end-effector
of a manipulator and (c) an au-
tonomous vehicle in an outdoor
environment.

We focus on a specific sub-part of the motion planning problem,
geometric motion planning on roadmaps. In geometric motion plan-
ning, we only consider the state-space constraints of the robot. All
configurations in the plan must be within the state-space limits and
must not put the robot in collision with the environment or with itself.
The collision-free solution path to a geometric motion planning prob-
lem is typically not enough for execution in most robotic systems - it
must subsequently be converted to a trajectory which also satisfies the
dynamical constraints of the system.

The term roadmap refers to one of the popular constructs to solve
the geometric motion planning problem. Roadmap-based methods are
an example of the sampling-based approach to motion planning, which
samples points in the robot’s configuration space rather than explicitly
constructing a representation of the obstacles[Lozano-Perez, 1983],
which typically cannot be done analytically for arbitrary configuration
spaces. The feasibility of configurations is verified using a collision
detection module, which is treated as a black box by the motion plan-
ning algorithm. A roadmap is a topological graph where the vertices
are sampled configurations of the robot, and the edges are connections
between vertices that can be created by some local planner (or just a
straight line between them). Given start and goal configurations, the
geometric motion planning problem is solved by connecting the start
and goal to the roadmap and finding a feasible path on the roadmap
between start and goal using some graph search algorithm [Dijkstra,

http://users.wpi.edu/~dberenson
http://coppeliarobotics.com
http://ompl.kavrakilab.org
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1959, Hart et al., 1968].
The basic idea behind roadmaps was introduced with the term prob-

abilistic roadmaps (PRM) [Kavraki et al., 1996]. The PRM approach
is to construct the roadmap graph in configuration space, remove
all vertices and edges that are in collision in an offline pre-processing
stage and then search for the shortest path between start and goal
configurations in an online query stage. It is particularly well suited
to multi-query settings where the environment does not change but
multiple start-goal pairs are generated, for which the shortest feasible
path needs to be found.

Figure 1.2: Courtesy
https://sites.google.com/
site/moslemk. An example of
a probabilistic roadmap used
to solve a 2D motion planning
problem.

N.B - To avoid any confusion, please note that in this thesis we
consider the LazyPRM [Bohlin and Kavraki, 2000] setting rather than
the classical PRM setting in that we do not have a phase where we
remove all edges and nodes in collision with the environment before
beginning the plan. That would not be practical in the real-time
case where we want a solution as soon as possible after observing the
environment. Once we obtain an environment on which we want to
solve some planning problem, we evaluate nodes and edges just-in-time
(also called lazy) for that specific problem.

We ideally want a geometric motion planning algorithm to ob-
tain good quality paths over a wide range of motion planning prob-
lems. What does that mean in terms of roadmaps? To be able to find
any feasible path over a diverse set of problems, we would want the
roadmaps to be large, with a very high number of vertices (samples)
so as to cover the configuration space sufficiently. And to get the
best quality paths possible with those vertices, we would want the
roadmaps to be dense or even complete, i.e. with a potential edge
between every pair of vertices.

The problem with large, dense roadmaps is that any shortest path
algorithm that directly searches over the entire roadmap graph may be
too computationally expensive to be practical in real-time. Therefore
we consider anytime motion planning, which finds an initial solution
quickly and uses its length (or some other relevant objective function)
as a bound for future solutions.

This thesis proposes an algorithmic framework for anytime
geometric motion planning on large, dense roadmaps.

Figure 1.3: A (rather out-
dated) snapshot of the Personal
Robotics Laboratory’s robot
HERB (Home Exploring Robot
Butler).

Though our approach, algorithms and analyses are all completely
general, in terms of applications we are particularly motivated by
motion planning for manipulators, such as for HERB [Srinivasa et al.,
2010], shown in Fig. 1.3.

https://sites.google.com/site/moslemk
https://sites.google.com/site/moslemk
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1.1 Observations for Manipulation Planning

We make three important observations about manipulation planning
that inform our general approach to the anytime motion planning
problem, and the particular aspects and challenges to consider.

Observation 1: Manipulators have several degrees of freedom

Most typical manipulators have many degrees of freedom, one for
each independently controlled joint. For instance, the Barrett WAM
arm [Smith and Rooks, 2006] which is used by HERB as well as
several other research platforms, has 7 active DOFs. The same is true
for each arm of the PR2, excluding the additional DOF at the wrist.
This makes the planning problem fairly high-dimensional. The number
of samples needed to cover a space grows exponentially with the
dimensionality of the problem. Therefore roadmaps for manipulation
planning need to be especially large.

Observation 2: Collision Checks can be very expensive

For manipulators, collision checking typically involves processing a
triangular mesh model of the manipulator as well as models of the
obstacles in the simulator that is used, as shown in Fig. 1.4. The more
articulated the robot, the more complex the mesh model, and the
more computationally expensive the collision check. In the classical
PRM approach, a significant fraction of time is spent on collision
checking [Sánchez and Latombe, 2002], irrespective of the problem
setting. This issue is further exacerbated when the collision checks are
particularly expensive. On roadmaps, this is manifested as expensive
edge evaluations because evaluating an edge involves checking several
embedded configurations.

Figure 1.4: A triangular mesh
model for an articulated robot
can often be extremely complex.
This makes collision checks,
which need to process the entire
mesh model in the worst case,
very computationally expensive.

Observation 3: The tradeoff between execution time and planning
time is crucial

Optimality and bounded sub-optimality are typically considered to
be important properties for motion planning algorithms. However,
manipulation planning on large dense roadmaps is perhaps the most
appropriate example where the execution speedup obtained by the
shortest (or approximately shortest) path may be negated by the
extra planning time required to find it. For a manipulation planning
problem, the configuration space of interest is a subset of the swath
of space that the manipulator can carve out. The difference between
the shortest and any non-shortest path is much smaller for a manipu-
lation planning problem than for say, a mobile robot or aerial vehicle
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planning problem traveling large distances. Therefore the tradeoff
between execution time (represented by the path length) and planning
time (represented by the effort to find a path) becomes particularly
important [Dellin, 2016].

1.2 Key Ideas

Our approach to anytime geometric motion planning on roadmaps is
based on two key ideas. They are motivated to some extent by the spe-
cific challenges for manipulation planning but as such are completely
general and can be applied to any geometric motion planning setting.
We outline them here.

Idea 1: Anytime planning as a search over a sequence of subgraphs

Our key insight for solving the anytime planning problem in large,
dense roadmaps is to provide existing path-planning algorithms with
a sequence of increasingly dense subgraphs of the roadmap graph,
using some densification strategy [Choudhury et al., 2016c]. At each
iteration, we run a shortest-path algorithm on the current subgraph to
obtain an increasingly tighter approximation of the true shortest path
(Fig. 1).

Choose
subgraph G ′

Compute
shortest path

G

Figure 1.5: The idea behind
densification is to search for the
shortest path over a sequence of
increasingly dense subgraphs of
the entire roadmap graph.

Existing approaches to anytime planning on graphs [Likhachev
et al., 2004, 2005, van den Berg et al., 2011] typically modify the
objective function in some way, thereby sacrificing optimality for a
quicker solution. Some of those approaches guarantee bounded sub-
optimality instead. This is quite reasonable to do when the graph
that is being searched over is of a moderate size. But a single search
with a modified objective function has a worst case complexity of
O(|V | log |V |+ |E|) ≡ O(N2) which may be unacceptable for real-time
applications, when dealing with large, dense roadmaps. Also, there is
no formal guarantee that these approaches will decrease search time
and they may still search all edges of a given graph [Wilt and Ruml,
2012].

Instead, we consider explicitly solving sub-problems of the entire
problem, and gradually increasing the size of each sub-problem until
we solve the original problem. On a roadmap graph, this naturally
maps to searching over increasingly dense subgraphs of the entire
roadmap graph. The nature of the subgraph may be able to bound
the sub-optimality of the solutions obtained, and more importantly,
the tradeoff between the worst-case search effort and bounded sub-
optimality. This is analysed in more detail in chapter 4.
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Idea 2: Searching over configuration space beliefs

Performing a collision check provides exact information but is compu-
tationally expensive. We assume that the roadmaps we search over are
embedded in a continuous ambient space, where nearby points tend to
share the same collision state. Therefore, we can use a model of the
world to estimate the probability of unevaluated configurations to be
free or in collision. We ensure that updating and querying the model
is inexpensive. Searching for paths based on collision probability
does not guarantee optimality, but may speed up the computation of
some feasible path. Furthermore, we search for paths that are pareto-
optimal in collision probability and path length, adjusting the tradeoff
between them to eventually obtain the shortest path on the graph
we are currently searching [Choudhury et al., 2016b]. See Fig. 2. We
propose using this search technique, which we will elaborate upon in
chapter 5, for searching each individual roadmap subgraph generated by
the densification strategy.

We want to try and minimize the number of collision checks while
searching for feasible paths in a roadmap. A number of previous
works have tried to address this - using the probability of collision
as a heuristic to guide the search over paths to obtain a feasible
path[Nielsen and Kavraki, 2000]; lazily and optimistically searching
for the shortest path in a roadmap [Bohlin and Kavraki, 2000, Dellin
and Srinivasa, 2016]; probabilistically modelling obstacle locations to
combine exploration and exploitation in a hybrid approach [Knepper
and Mason, 2012]; using collision probabilities learned from previous
instances to modify the roadmap cost function, and filter out unlikely
configurations [Pan et al., 2013].

Figure 1.6: We reason about
the tradeoff between path length
and collision measure (related
to probability) for candidate
paths. Specifically, we efficiently
search for paths that are pareto-
optimal in the two quantities
and select them for lazy evalua-
tion.

Past work lacks, however, a way to connect the two problems
of finding a feasible path quickly and finding the shortest feasible
path in the roadmap. Our key insight is that this can be achieved by
balancing the probability of collision and the length of a path in the
objective. We show that this behaviour is approximately equivalent
to searching for paths of minimum expected cost, with a gradually
decreasing penalty of being in collision.

1.3 Contributions

This thesis proposes an algorithmic framework for anytime geometric
motion planning in large, dense roadmaps that is particularly well
suited for the difficult high-dimensional setting of manipulation. Based
on our key ideas, the following are our contributions:

• We motivate the use of a large, dense roadmap for motion planning.
In particular we propose using the same roadmap constructed
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for a particular robot’s configuration space over a wide range of
problems that the robot may be required to solve. This lets us take
advantage of the structure embedded in the roadmap, as well as
various preprocessing benefits of using the same roadmap repeatedly
(chapter 3).

• We frame the problem of anytime planning on a roadmap as search-
ing over a sequence of subgraphs of the entire roadmap graph. We
discuss several densification strategies to generate this sequence of
subgraphs. For the specific case where the samples are generated
from a low-dispersion (Sec. 2.2) deterministic sequence, we analyse
the tradeoff between effort and bounded sub-optimality (chapter 4,
Choudhury et al. [2016c])

• We present an anytime planning algorithm (for a reasonably sized
roadmap) that maintains a belief over configuration space collision
probabilities and efficiently searches for paths that are pareto-
optimal in collision probability and path length (chapter 5, Choud-
hury et al. [2016b]).

We conclude in chapter 6 by discussing an overall perspective of our
approach and its limitations, as well as interesting questions for future
research.



2
Background

We briefly outline the various concepts and relevant prior works that
this thesis is based on.

2.1 Motion Planning

As stated in chapter 1, motion planning is a fundamental problem
in robotics. There are comprehensive texts on the subject [LaValle,
2006, Latombe, 2012] that discuss the various developments in this
field, from the origins in the classical piano mover’s problem [Schwartz
and Sharir, 1983]. We are specifically interested in geometric motion
planning which focuses on finding a valid path between start and goal
configurations that is not in collision anywhere along the path [Lozano-
Pérez and Wesley, 1979].

2.1.1 Sampling-based motion planning

Sampling-based planning approaches build a graph, or a roadmap,
in the configuration space, where vertices are configurations and
edges are local paths connecting configurations. A path is then found
by traversing this roadmap while checking if the vertices and edges
are collision free. Initial algorithms such as PRM [Kavraki et al.,
1996] and RRT [LaValle and Kuffner, 1999] were concerned with
finding a feasible solution. However, in recent years, there has been
growing interest in finding high-quality solutions. Karaman and
Frazzoli [Karaman and Frazzoli, 2011] introduced variants of the
PRM and RRT algorithms, called PRM* and RRT*, respectively and
proved that, asymptotically, the solution obtained by these algorithms
converges to the optimal solution. However, the running times of
these algorithms are often significantly higher than their non-optimal
counterparts. Thus, subsequent algorithms have been suggested to
increase the rate of convergence to high-quality solutions. They use
different approaches such as lazy computation [Bohlin and Kavraki,
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2000, Janson et al., 2015b, Salzman and Halperin, 2015, Dellin and
Srinivasa, 2016], informed sampling [Gammell et al., 2014a], pruning
vertices [Gammell et al., 2014b], relaxing optimality [Salzman and
Halperin, 2016], exploiting local information [Choudhury et al., 2016a]
and lifelong planning together with heuristics [Koenig et al., 2004].

2.1.2 Efficient path-planning algorithms

We are interested in path-planning algorithms that attempt to re-
duce the amount of computationally expensive edge expansions per-
formed in a search. This is typically done using heuristics such as
for A* [Hart et al., 1968], for Iterative Deepening A* [Korf, 1985]
and for Lazy Weighted A* [Cohen et al., 2014]. Some of these al-
gorithms, such as Lifelong Planning A* [Koenig et al., 2004] allow
recomputing the shortest path in an efficient manner when the graph
undergoes changes. Anytime variants of A* such as Anytime Repairing
A* [Likhachev et al., 2004] and Anytime Nonparametric A* [van den
Berg et al., 2011] efficiently run a succession of A* searches, each with
an inflated heuristic. This potentially obtains a fast approximation
and refines its quality as time permits. However, there is no formal
guarantee that these approaches will decrease search time and they
may still search all edges of a given graph [Wilt and Ruml, 2012]. For
a unifying formalism of such algorithms relevant to explicit roadmaps,
in settings where edge evaluations are expensive, and for additional
references, see [Dellin and Srinivasa, 2016].

2.1.3 Finite-time properties of sampling-based algorithms

Extensive analysis has been done on asymptotic properties of sampling-
based algorithms, i.e. properties such as connectivity and optimality
when the number of samples tends to infinity [Kavraki et al., 1998,
Karaman and Frazzoli, 2011].

We are interested in bounding the quality of a solution obtained
using a fixed roadmap for a finite number of samples. When the
samples are generated from a deterministic sequence, [Janson et al.,
2015a, Thm2] give a closed-form solution bounding the quality of the
solution of a PRM whose roadmap is an r-disk graph. The bound is a
function of r, the number of vertices n and the dispersion of the set of
points used. (See for an exact definition of dispersion and for the exact
bound given by [Janson et al., 2015a]).

Similar bounds have been provided by [Dobson et al., 2015] when
randomly sampled i.i.d points are used. Specifically, they consider
a PRM whose roadmap is an r-disk graph for a specific radius r =

c · (logn/n)1/d where n is the number of points, d is the dimension and
c is some constant. They then give a bound on the probability that
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the quality of the solution will be larger than a given threshold.

2.2 Dispersion

The dispersion Dn(S) of a sequence S is defined as

Dn(S) = sup
x∈X

min
s∈S

ρ(x, s)

Intuitively, it can be thought of as the radius of the largest empty
ball (by some metric) that can be drawn around any point in the
space X without intersecting any point of S. A lower dispersion
implies a better coverage of the space by the points in S. When X is
the d-dimensional Euclidean space and ρ is the Euclidean distance,
deterministic sequences with dispersion of order O(n−1/d) exist. A
simple example is a set of points lying on grid or a lattice.

Other low-dispersion deterministic sequences exist which also have
low discrepancy, i.e. they appear to be random for many purposes.
Specifically, the discrepancy of a set of points is the deviation of
the set from the uniform random distribution. The corresponding
mathematical definition of discrepancy is

Dn(S,R) = sup
R∈R
{
∣∣∣∣ |S ∩R|n

− µ(R)

µ(X )

∣∣∣∣}
where R is a collection of subsets of X called the range space. It is
typically taken to be the set of all axis-aligned rectangular subsets.
The µ operator refers to the Lebesgue Measure or the generalized
volume of the operand [Bartle, 2014].

One such example is the Halton sequence [Halton, 1960]. We will
use them extensively for our analysis because they have been stud-
ied in the context of deterministic motion planning [Janson et al.,
2015a, Branicky et al., 2001]. Halton sequences are constructed by
taking d prime numbers, called generators, one for each dimension.
Each generator g induces a sequence, called a Van der Corput se-
quence. The k’th element of the Halton sequence is then constructed
by taking the k’th element of each of the d Van der Corput sequences.
For Halton sequences, tight bounds on dispersion exist. Specifically,
Dn(S) ≤ pd · n−1/d where pd ≈ dlog d is the dth prime number. Subse-
quently in this paper, we will use Dn (and not Dn(S)) to denote the
dispersion of the first n points of S.

Previous work bounds the length of the shortest path computed
over an r-disk roadmap constructed using a low-dispersion determin-
istic sequence [Janson et al., 2015a, Thm2]. Specifically, given start
and target vertices, consider all paths Γ connecting them which have
δ-clearance for some δ. Note that a path has clearance δ if every point
on the path is at a distance of at least δ away from every obstacle. Set
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δmax to be the maximal clearance over all such δ. If δmax > 0, then
for all 0 < δ ≤ δmax set c∗(δ) to be the cost of the shortest path in Γ
with δ-clearance. Let c(`, r) be the length of the path returned by a
shortest-path algorithm on G(`, r) with S(`) having dispersion D`. For
2D` < r < δ, we have that

c(`, r) ≤
(

1 + 2D`

r− 2D`

)
· c∗(δ). (2.1)

Notably, for n random i.i.d. points, the lower bound on the disper-
sion is O

(
(logn/n)1/d

)
[Niederreiter, 1992] which is strictly larger

than for deterministic samples.
For domains other than the unit hypercube, the insights from the

analysis will generally hold. However, the dispersion bounds may
become far more complicated depending on the domain, and the
distance metric would need to be scaled accordingly. This may result
in the quantitative bounds being difficult to deduce analytically.

2.3 Configuration Space Belief

The probability of collision of a path is derived from an approximate
model of the configuration space of the robot. Since we explicitly seek
to minimize collision checks, we build up an incremental model using
data from previous collision tests, instead of sampling several, poten-
tially irrelevant configurations apriori. This idea has been studied
[Burns and Brock, 2003, 2005a] in similar contexts. Furthermore, the
evolving probabilistic model can be used to guide future searches to-
wards likely free regions. Previous work has analyzed and utilized this
exploration-exploitation paradigm for faster motion planning [Rickert
et al., 2008, Knepper and Mason, 2012, Pan et al., 2013, Arslan and
Tsiotras, 2015].

2.4 Multi-objective Path Search

We reason about both the path length and the probability of collision
for an individual candidate path. This analysis is built upon a con-
siderable body of work dealing with bi-criteria path problems. Early
work has conducted a systematic study of these problems [Hansen,
1980], and devised methods to obtain non-dominated or Pareto opti-
mal paths [Climaco and Martins, 1982]. It has also provided insights
directly relevant to shortest path problems for robots[Mitchell and
Sastry, 2003].



3
Problem Definition

Let X denote a d-dimensional C-space, Xfree the collision-free portion
of X , Xobs = X \ Xfree its complement and let ζ : X × X → R be
some distance metric. For simplicity, we assume that X = [0, 1]d

and that ζ is the Euclidean norm. Let S = {s1, . . . , sn} be some
sequence of points where s` ∈ X for some integer n ∈ N and denote
by S(`) the first ` elements of S. We define the r-disk graph G(`, r) =
(V`,E`,r) where V` = S(`), E`,r = {(u, v) | u, v ∈ V` and ζ(u, v) ≤ r}
and each edge (u, v) is of length ζ(u, v). See [Karaman and Frazzoli,
2011, Solovey et al., 2016] for various properties of such graphs in
the context of motion planning. Our definition assumes that G is
embedded in X . Set G = G(n,

√
d), namely, the complete1 graph 1 Using a radius of

√
d ensures that

every two points will be connected
due to the assumption that X =
[0, 1]d and that ζ is Euclidean.

defined over S. In a complete graph there is an edge between every
pair of vertices.

We propose using the same roadmap (with online, lazy evaluations
for each specific environment) over a range of problem instances. As
mentioned in chapter 1, we cannot do the pre-processing in the sense
of the classical PRM approach due to real-time constraints. However,
using a fixed roadmap structure allows us to do some environment-
agnostic preprocessing that other classes of approaches like tree-
growing [Kuffner and LaValle, 2000] or trajectory optimization [Ratliff
et al., 2009] cannot do.

We can pre-compute all the nearest neighbors for each of the ver-
tices in the roadmap, and filter out the configurations in self-collision,
thereby requiring us to only check for robot-environment collisions
during planning. Previous work has shown that both the computa-
tion of nearest neighbours [Kleinbort et al., 2016] and detecting self-
collision [Srinivasa et al., 2016] are expensive components of motion
planning algorithms.

As we have motivated earlier in chapter 1, we would need to use
large dense motion-planning roadmaps to get good quality solutions
over a wide range of problems. An illustration of why this is necessary
is shown with some R2 problems in Fig. 3.1. For ease of analysis we
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(a) (b) (c)
Figure 3.1: Consider the range
of toy problems shown here :
(a) A few obstacles with large
gaps between them (b) A sin-
gle narrow passage (c) Several
obstacles with narrow gaps
between them. A large dense
roadmap is necessary to find fea-
sible paths of good quality over
such a diverse set of problems.

assume that the roadmap is complete, but our densification strate-
gies and analysis can be extended to dense roadmaps that are not
complete.

To save computation, although we create the graph explicitly, we
do not evaluate it apriori, so we do not know if any of its vertices
or edges are in Cfree or Cobs. This setup is similar to that of the
LazyPRM [Bohlin and Kavraki, 2000], which then searches over the
graph optimistically until it finds the shortest feasible path.

A query Q is a scenario with start and target configurations. Let
the start and target configurations be s1 and s2, respectively. The
obstacles induce a mappingM : X → {Xfree,Xobs} called a collision
detector which checks if a configuration or edge is collision-free or not.
Typically, edges are checked by densely sampling along the edge, and
performing expensive collision checks for each sampled configuration,
hence the term expensive edge evaluation. A feasible path is denoted
by γ : [0, 1] → Xfree where γ[0] = s1 and γ[1] = s2. In terms of
the graph, a path is feasible if every included edge is in Xfree. Slightly
abusing this notation, set γ(G(`, r)) to be the shortest collision-free
path from s1 to s2 that can be computed in G(`, r), its clearance as
δ(G(`, r)) and denote by γ∗ = γ(G) and δ∗ = δ(G) the shortest path
and its clearance that can be computed in G, respectively.

Our problem calls for finding a sequence of increasingly shorter
feasible paths γ0, γ1 . . . in G, converging to γ∗. We assume that n =

|S| is sufficiently large, and the roadmap covers the space well enough
so that for any reasonable set of obstacles, there are multiple feasible
paths to be obtained between start and goal. Therefore, we do not
consider a case where the entire roadmap is invalidated by obstacles.
The large value of n makes any path-finding algorithm that directly
searches G, thereby performing O(n2) calls to the collision-detector,
too time-consuming to be practical.



4
Densification

(This chapter is based on work presented in [Choudhury et al., 2016c].)
As mentioned in chapter 3, a densification strategy is a means to
traverse the space of r-disk subgraphs of the entire roadmap graph,
selecting subgraphs along the way to be searched, all the way to the
fully connected roadmap. In this chapter, we discuss our general
approach of searching over the space of all (r-disk) subgraphs of G.

We start by characterizing the boundaries and different regions of
this space. Subsequently, we introduce two densification strategies—
edge batching and vertex batching. As we will see, these two are
complementary in nature, which motivates our third strategy, which
we call hybrid batching.
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Figure 4.1: Our meta algorithm
leverages existing path-planning
algorithms and provides them
with a sequence of subgraphs.
To do so we consider densifica-
tion strategies for traversing the
space of r-disk subgraphs of the
roadmap G. , The x-axis and
the y-axis represent the number
of vertices and the number of
edges (induced by r) of the sub-
graph, respectively. A particular
subgraph is defined by a point
in this space. Edge batching
searches over all samples and
adds edges according to an in-
creasing radius of connectivity.
Vertex batching searches over
complete subgraphs induced
by progressively larger subsets
of vertices. Hybrid batching
uses the minimal connection
radius f(|V |) to ensure connec-
tivity until it reaches |V | = n

and then proceeds like edge
batching.

4.1 The space of subgraphs

To perform an anytime search over G, given the collision detectorM,
we iteratively search a sequence of graphs G0(n0, r0) ⊆ G1(n1, r1) ⊆
. . . ⊆ Gm(nm, rm) = G. If no feasible path exists in the subgraph, we
move on to the next subgraph in the sequence, which is more likely to
have a feasible path.

We use an incremental path-planning algorithm that allows us to
efficiently recompute shortest paths. Our problem setting of increas-
ingly dense subgraphs is particularly amenable to such algorithms.
However, any alternative shortest-path algorithm may be used. We
emphasize again that we focus on the meta-algorithm of choosing
which subgraphs to search. Further details on the implementation of
these approaches are provided in Sec. 4.4.

Fig. 4.1 depicts the set of possible graphs G(`, r) for all choices of
0 < ` ≤ n and 0 < r ≤

√
d. Specifically, the graph depicts |E`,r| as

a function of |V`|. We discuss it in detail to motivate our approach
for solving the problem of anytime planning on large, dense roadmaps
and the specific sequence of subgraphs we use. First, consider the
curves that define the boundary of all possible graphs: The vertical
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line |V | = n corresponds to subgraphs defined over the entire set
of vertices, where batches of edges are added as r increases. The
parabolic arc |E| = |V | · (|V |− 1)/2, corresponds to complete subgraphs
defined over increasingly larger sets of vertices.

Recall that we wish to approximate the shortest path γ∗ which has
some minimal clearance δ∗. Given a specific graph, to ensure that a
path that approximates γ∗ is found, two conditions should be met:
(i) The graph includes some minimal number nmin of vertices. The
exact value of nmin will be a function of the dispersion Dnmin of the
sequence S and the clearance δ∗. (ii) A minimal connection radius r0
is used to ensure that the graph is connected. Its value will depend on
the sequence S (and not on δ∗).
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Figure 4.2: Vertex Starvation
happens in the region with too
few vertices to ensure a solu-
tion, even for a fully connected
subgraph. Edge Starvation hap-
pens in the region where the
radius r is too low to guarantee
connectivity.

In Fig. 4.2, requirement (i) induces a vertical line at |V | = nmin.
Any point to the left of this line corresponds to a graph with too few
vertices to prove any guarantee that a solution will be found. We call
this the vertex-starvation region. Requirement (ii) induces a curve
f(|V |) such that any point below this curve corresponds to a graph
which may be disconnected. We call this the edge-starvation region.
The exact form of the curve depends on the sequence S that is used.
Any point outside the starvation regions represents a graph G(`, r)
such that the length of γ(G(`, r)) may be bounded. For a discussion
on specific bounds, see Sec. 4.3.1

4.2 Densification Strategies

Our goal is to search increasingly dense subgraphs of G. This corre-
sponds to a sequence of points on the space of subgraphs (Fig. 4.2)
that ends at the upper right corner of the space. We discuss three
general densification strategies, and defer the discussion on the choice
of parameters used for each strategy to Sec. 4.4

4.2.1 Edge Batching

All subgraphs include the complete set of vertices S and the edges
are incrementally added via an increasing connection radius. Specifi-
cally, ∀i ni = n and ri = ηeri−1 where ηe > 1 and r0 is some small
initial radius. Here, we choose r0 = O(f(n)), where f is the edge-
starvation boundary curve defined previously. It defines the minimal
radius to ensure connectivity (in the asymptotic case) using r-disk
graphs. Specifically, f(n) = O

(
n−1/d

)
for low-dispersion deter-

ministic sequences and f(n) = O
(
(logn/n)−1/d

)
for random i.i.d

sequences [Janson et al., 2015a, Karaman and Frazzoli, 2011, Salzman
et al., 2016]. Using Fig. 4.2, this induces a sequence of points along
the vertical line at |V | = n starting from |E| = O(n2rd0) and ending at
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(a) 40 checks (b) 953 checks (c) 6310 checks (d) 2573 checks (e) 61506 checks (f) 164504 checks

(g) 206 checks (h) 676 checks (i) 15099 checks (j) 1390 checks (k) 4687 checks (l) 78546 checks
Figure 4.3: Visualizations of
vertex batching (upper row) and
edge batching (lower row) on
easy (left pane) and hard (right
pane) R2 problems respectively.
The same set of samples S is
used in each case. For easy
problems, vertex batching finds
the first solution quickly with
a sparse set of initial samples.
Additional heuristics hereafter
help it converge to the optimum
with fewer edge evaluations
than edge batching. The harder
problem has 10× more obstacles
and lower average obstacle gaps.
Therefore, both vertex and edge
batching require more edge
evaluations for finding feasible
solutions and the shortest path.
In particular, vertex batching
requires multiple iterations to
find its first solution, while edge
batching still does so on its
first search, albeit with more
collision checks than for the easy
problem. Note that the coverage
of collision checks only appears
similar at the end due to resolu-
tion limits for visualization.

|E| = O(n2).

4.2.2 Vertex Batching

In this variant, all subgraphs are complete graphs defined over
increasing subsets of the complete set of vertices S. Specifically
∀i ri = rmax =

√
d, ni = ηvni−1 where ηv > 1 and the base

term n0 is some small number of vertices. Because we have no pri-
ors about the obstacle density or distribution, the chosen n0 is a
constant and does not vary due to n or due to the volume of Xobs.
Using Fig. 4.2, this induces a sequence of points along the parabolic
arc |E| = |V | · (|V | − 1)/2 starting from |V | = n0 and ending at
|V | = n. The vertices are chosen in the same order with which they
are generated by S. So, G0 has the first n0 samples of S, and so on.

Intuitively, the relative performance of these densification strategies
depends on problem hardness. We use the clearance of the shortest
path, δ∗, to represent the hardness of the problem. This, in turn,
defines nmin which bounds the vertex-starvation region. Specifically
we say that a problem is easy (resp. hard) when δ∗ ≈

√
d (resp. δ∗ ≈

Ω(Dn(S))). For easy problems, with larger gaps between obstacles,
where δ∗ ≈ O(

√
d), vertex batching can find a solution quickly with

fewer samples and long edges, thereby restricting the work done for
future searches. In contrast, assuming that n > nmin, edge batching
will find a solution on the first iteration but the time to do so may be
far greater than for vertex batching because the number of samples
is so large. For hard problems where δ∗ ≈ O(Dn), vertex batching
may require multiple iterations until the number of samples it uses
is large enough and it is out of the vertex-starvation region. Each
of these searches would exhaust the fully connected subgraph before
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terminating. This cumulative effort is expected to exceed that required
by edge batching for the same problem, which is expected to find a
feasible albeit sub-optimal path on the first search. A visual depiction
of this intuition is given in Fig. 4.4. Since we are focused on problems
with expensive edge evaluations, we treat work due to edge evaluations
as a reasonable approximation of the total work done by the search.
An empirical example of this is shown in Fig. 4.3.

4.2.3 Hybrid Batching

Vertex and edge batching exhibit generally complementary properties
for problems with varying difficulty. Yet, when a query Q is given,
the hardness of the problem is not known a-priori. In this section
we propose a hybrid approach that exhibits favourable properties,
regardless of the hardness of the problem.
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Figure 4.4: A visualization of
the work required by our densi-
fication strategies as a function
of the problem’s hardness. Here
work is measured as the num-
ber of edges evaluated. This is
visualized using the gradient
shading where light gray (resp.
dark grey) depicts a small (resp.
large) amount of work. Assum-
ing n > nmin, the amount of
work required by edge batching
remains the same regardless of
problem difficulty. For vertex
batching the amount of work
required depends on the hard-
ness of the problem. Here we
visualize an easy and a hard
problem using nmin (easy) and
nmin (hard), respectively.

This hybrid batching strategy commences by searching over a
graph G(n0, r0) where n0 is the same as for vertex batching and
r0 = O(f(n0)). As long as ni < n, the next batch has ni+1 = ηvni
and ri = O(f(ni)). When ni = n (and ri = O(f(n))), all subsequent
batches are similar to edge batching, i.e., ri+1 = ηeri (and ni+1 = n).

This can be visualized on the space of subgraphs as sampling along
the curve f(|V |) from |V | = n0 until f(|V |) intersects |V | = n and
then sampling along the vertical line |V | = n. See Fig. 4.1 and Fig.
4.4 for a mental picture. As we will see in our experiments, hybrid
batching typically performs comparably (in terms of path quality)
to vertex batching on easy problems and to edge batching on hard
problems.

The intuition behind this is straightforward. If the problem is easy,
then hybrid batching finds a feasible solution early on, typically when
the number of vertices is similar to that needed by vertex batching
for a feasible solution. Thus, the work would be far less than that for
edge batching. On the other hand, if the problem is hard, then hybrid
batching would have to get much closer to the |V | = n line before
the dispersion becomes low enough to find a solution. However, it
would not involve as much work as for vertex batching, because the
radius decreases when the number of vertices increases, unlike vertex
batching which uses ri =

√
d for every iteration i.

4.3 Analysis for Halton Sequences

In this section we consider the space of subgraphs and the densifi-
cation strategies that we introduced in Sec. 4.2 for the specific case
that S is a Halton sequence (Sec. 2.2). We start by describing the
boundaries of the starvation regions. We then continue by simulating
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the bound on the quality of the solution obtained as a function of the
work done for each of our strategies.

Recall that the since we are considering the unit hypercube [0, 1]d,
then δmax <

√
d. We use (Eq. 2.1) to first obtain bounds on the vertex

and edge starvation regions, and subsequently analyze the tradeoff
between work and solution quality for vertex and edge batching.

4.3.1 Starvation region bounds

To bound the vertex starvation region we wish to find nmin after which
bounded sub-optimality can be guaranteed to find the first solution.
Note that δ∗ is the clearance of the shortest path γ∗ in G connecting
s1 and s2, that pd denotes the dth prime and Dn ≤ pd/n1/d for Halton
sequences. For (Eq. 2.1) to hold we require that 2Dnmin < δ∗. Thus,

2Dnmin < δ∗ ⇒ 2 pd

n1/d
min

< δ∗ ⇒ nmin >

(
2pd
δ∗

)d
(4.1)

Indeed, one can see that as the problem becomes harder (namely, δ∗

decreases), nmin and the entire vertex-starvation region grows.
We now show that for Halton sequences, the edge-starvation region

has a linear boundary, i.e. f(|V |) = O(|V |). Using (Eq. 2.1) we
have that the minimal radius rmin(|V |) required for a graph with |V |
vertices is

rmin(|V |) > 2D|V | ⇒ rmin(|V |) >
2pd

(|V |)1/d . (4.2)

For any r-disk graph G(`, r), the number of edges is |E`,r| = O
(
`2 · rd

)
.

In our case,

f(|V |) = O
(
|V |2 · rdmin(|V |)

)
= O(|V |). (4.3)
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Figure 4.5: A simulation of the
work-suboptimality tradeoff for
vertex, edge and hybrid batch-
ing. Here we chose n = 106

and d = 4. The easy and hard
problems have δ∗ =

√
d/2 and

δ∗ = 5Dn, respectively. The
plot is produced by sampling
points along the curves |V | = n

and |E| = |V | · (|V | − 1|)/2 and
using the respective values in
(Eq. 2.1). Note that x-axis is in
log-scale.

4.3.2 Effort-to-Quality ratio

We now compare our densification strategies in terms of their worst-
case anytime performance. Specifically, we plot the cumulative amount
of work as subgraphs are searched, measured by the maximum number
of edges that may be evaluated, as a function of the bound on the
quality of the solution that may be obtained using (Eq. 2.1). We fix a
specific setting (namely d and n) and simulate the work done and the
suboptimality using the necessary formulae. This is done for an easy
and a hard problem. See Fig. 4.5.

Indeed, this simulation coincides with our discussion on properties
of both batching strategies with respect to the problem difficulty.
Vertex batching outperforms edge batching on easy problems and vice
versa. Hybrid batching lies somewhere in between the two approaches
with the specifics depending on problem difficulty.
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4.4 Implementation

Our analysis and exposition so far has been independent of any param-
eters for the densification or any other implementation decisions. In
this section we outline the specifics of how we implement the densifi-
cation strategies for anytime planning on roadmaps, before going into
the results for the same.

4.4.1 Densification Parameters

We choose the parameters for each densification strategy such that the
number of batches is O(log2n).

4.4.1.1 Edge Batching

We set ηe = 21/d . Recall that for r-disk graphs, the average degree of
vertices is n · rdi , therefore this value (and hence the number of edges) is
doubled after each iteration. We set r0 = 3 · n−1/d.

4.4.1.2 Vertex Batching

We set the initial number of vertices n0 to be 100, irrespective of the
roadmap size and problem setting, and set ηv = 2. After each batch
we double the number of vertices.

4.4.1.3 Hybrid Batching

The parameters are derived from those used for vertex and edge
batching. We begin with n0 = 100, and after each batch we increase
the vertices by a factor of ηv = 2. For these searches, i.e. in the region
where ni < n, we use ri = 3 · n−1/d. This ensures the same radius
at n as for edge batching. Subsequently, we increase the radius as
ri = ηeri−1, where ηe = 21/d.

4.4.2 Optimizations

For the densification strategies to be useful in practice, we employ
certain optimizations. To motivate this, consider the total work done
(measured in edge evaluations) by the batching strategies in the worst
case. Recall that for naively searching the entire roadmap, this work
is (n2) ≈

n2
2 . Furthermore for our worst-case analysis, we assume that

both batching strategies run for log2n iterations.
For vertex batching, the number of vertices at a given iteration

is ni = 2i and the number of vertices is |Ei| ≈ n2
i /2 = 22i−1. The
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worst-case work complexity for vertex batching is:

log2n∑
i=1
|Ei| =

log2n∑
i=1

22i−1 =
2n2

3 + lower order terms (4.4)

For edge batching, with low-dispersion sequences, we have that
|Ei| ≈ n2i. The worst-case work complexity for edge batching is:

log2n∑
i=1
|Ei| =

log2n∑
i=1

n2i = 2n2 + lower order terms (4.5)

Note that hybrid batching’s worst-case work would be greater than
edge batching, so we omit the expression for brevity. Therefore, in all
cases, the worst case work done by any batching strategy is strictly
larger than searching G directly. Thus, we consider numerous optimiza-
tions and their effect on the overall performance.

4.4.2.1 Search Technique

Each subgraph is searched using Lazy A∗ [Cohen et al., 2014] with
incremental rewiring as in LPA∗ [Koenig et al., 2004]. For details, see
the search algorithm used for a single batch of BIT∗ [Gammell et al.,
2014b]. This lazy variant of A∗ has been shown to outperform other
path-planning techniques for motion-planning search problems with
expensive edge evaluations [Dellin and Srinivasa, 2016].
N.B - We use the search technique described above in [Choudhury
et al., 2016c] to compare directly with BIT∗. However, as mentioned
in chapter 3, in this thesis we propose using POMP (chapter 5, Choud-
hury et al. [2016b]) as the technique for searching each individual
subgraph.

4.4.2.2 Caching Collision Checks

Each time the collision-detectorM is called for an edge, we store the
ID of the edge along with the result using a hashing data structure.
Subsequent calls for that specific edge are simply lookups in the
hashing data structure which incur negligible running time. Thus,M
is called for each edge at most once.

4.4.2.3 Sample Pruning and Rejection

For anytime algorithms, once an initial solution is obtained, subse-
quent searches should be focused on the subset of states that could
potentially improve the solution. When the space X is Euclidean,
this, so-called “informed subset”, can be described by a prolate hy-
perspheroid [Gammell et al., 2014a]. For our densification strategies,
we prune away all existing vertices (for all batching), and reject the
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newer vertices (for vertex and hybrid batching), that fall outside the
informed subset.

Successive prunings due to intermediate solutions significantly
reduces the average-case complexity of future searches [Gammell
et al., 2014b], despite the extra time required to do so, which is ac-
counted for in our benchmarking. Note that for Vertex and Hybrid
Batching, which begin with only a few samples, samples in succes-
sive batches that are outside the current ellipse can just be rejected.
This is cheaper than pruning, which is required for Edge Batching.
Across all test cases, we noticed poorer performance when pruning was
omitted.

In the presence of obstacles, the extent to which the complexity is
reduced due to pruning is difficult to obtain analytically. As shown in
Theorem 4.1, however, in the assumption of free space, we can derive
results for Edge Batching. This motivates using this heuristic.

Theorem 4.1. Running edge batching in an obstacle-free d-dimensional
Euclidean space over a roadmap constructed using a deterministic low-
dispersion sequence with r0 > 2Dn and ri+1 = 21/dri, while using
sample pruning and rejection makes the worst-case complexity of the
total search, measured in edge evaluations, O(n1+1/d).

Proof. Let cibest denote the cost of the solution obtained after i iter-
ations by our edge batching algorithm, and cmin = ρ(s1, s2) ≤

√
d

denote the cost of the optimal solution. Using (Eq. 2.1),

cibest ≤ (1 + εi) cmin, (4.6)

where εi = 2Dn
ri−2Dn

. Using the parameters for edge batching,

εi+1 =
2Dn

ri+1 − 2Dn
=

2Dn

2
1
d ri − 2Dn

≤ εi

2
1
d

. (4.7)

Let imax be the maximum number of iterations and recall that we
have imax = O (log2 n).

Note that the fact that vertices and edges are pruned away, does
not change the bound provided in (Eq. 4.6). To compute the actual
number of edges considered at the ith iteration, we bound the volume
of the prolate hyperspheriod Xci

best
in Rd (see [Gammell et al., 2014b])

by,

µ
(
Xci

best

)
=
cibest

((
cibest

)2 − c2
min

) d−1
2
ξd

2d
, (4.8)

where ξd is the volume of an Rd unit-ball. Using (Eq. 4.6) in (Eq.
4.8),

µ
(
Xci

best

)
≤ ε

d−1
2

i (1 + εi) (2 + εi)
d−1

2 Γd, (4.9)
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where Γd = ξd · (cmin/2)d is a constant. Using (Eq. 4.7) we can bound
the volume of the ellipse used at the i’th iteration, where i ≥ 1,

µ
(
Xci

best

)
≤ ε

d−1
2

i (1 + ε0) (2 + ε0)
d−1

2 Γd

≤ η−
i(d−1)

2 ε
d−1

2
0 (1 + ε0) (2 + ε0)

d−1
2 Γd

≤ 2−
i(d−1)

2d µ
(
Xc0

best

) (4.10)

Furthermore, we choose r0 such that µ
(
Xc0

best

)
≤ µ (X ). Now, the

number of vertices in Xci
best

can be bounded by,

ni+1 =
µ
(
Xci

best

)
µ (X )

n ≤ 2−
i(d−1)

2d n. (4.11)

Recall that we measure the amount of work done by the search at
iteration i using |Ei|, the number of edges considered. Thus,

|Ei| = O
(
n2
i r
d
i

)
= O

(
n22−

i(d−1)
d

(
r02

i
d

)d)
= O

(
n2

i
d

)
(4.12)

Finally, the total work done by the search over all iterations is

O

log2 n∑
i=0

n2
i
d

 = O

n log2 n∑
i=0

2i/d
 = O

(
n1+ 1

d

)
. (4.13)

A similar result for vertex batching cannot be obtained simply because
in the obstacle free case, vertex batching would find a solution imme-
diately, rendering this analysis trivial. We omit the result for hybrid
batching, but it can be shown by a similar process that it too has
worst case work O(n1+1/d).

4.4.2.4 Path shortcutting with local clique search

A useful local optimization technique that edge (and hybrid) batching
allow for is searching the fully connected subgraph, i.e. the clique
induced by the vertices on an intermediate feasible path [Geraerts
and Overmars, 2007]. The extent of possible improvement depends on
the actual vertices and the obstacle distribution, but intuitively, the
optimization is useful for discovering longer edges early on that may
be part of the globally optimal path. This can help address our earlier
comment that edge (and hybrid) batching may suffer if the optimal
path has very long edges.

If Halton sequences are used, for sufficiently large n, as shown ear-
lier, we can bound the sub-optimality of intermediate path cost cG
in terms of the cost of the global optimum with δ-clearance, c∗(δ).
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(a) R2 - Easy
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(b) R2 - Hard
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(c) R4 - Easy
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(d) R4 - Hard

Figure 4.6: Experimental results
in random unit hybercube sce-
narios for vertex batching
edge batching, and hybrid
batching. The y-axis is the ratio
between the length of the path
produced by the algorithm and
length of γ∗ (the shortest path
on G) for that problem. The
naive strategy of searching the
complete graph requires the
following times to find a solu-
tion - (a) 44s, (b) 200s, (c) 12s
and (d) 56s. In each case this
is significantly more than the
time for any other strategy to
reach the optimum. Figure best
viewed in color.

Furthermore we can bound the number of vertices lying on an interme-
diate path to be κ < cG

D(S) <
((1+ε(n,r))c∗(δ)

D(S) . Searching for the shortest
path on a clique of size κ is O(κ2).

4.5 Experiments

Our implementations of the various strategies are based on the
publicly available OMPL [Şucan et al., 2012] implementation of
BIT∗ [Gammell et al., 2014b]. Other than the specific parameters
and optimizations mentioned earlier, we use the default parameters
of BIT∗. Notably, we use the Euclidean distance heuristic, an approx-
imately sorted queue, and limit graph pruning to changes in path
length greater than 1%.

4.5.1 Random hypercube scenarios

The different batching strategies are compared to each other on prob-
lems in Rd for d = 2, 4. The domain is the unit hypercube [0, 1]d while
the obstacles are randomly generated axis-aligned d-dimensional hyper-
rectangles. All problems have a start configuration of [0.25, 0.25, . . .]
and a goal configuration of [0.75, 0.75, . . .]. We used the first n = 104

and n = 105 points of the Halton sequence for the R2 and R4 prob-
lems, respectively.

Two parameters of the obstacles are varied to approximate the
notion of problem hardness described earlier – the number of obstacles
and the fraction of X which is in Xobs, which we denote by ζobs. An
easy problem is one which has fewer obstacles and a smaller value
of ζforb. The converse is true for a hard problem. Specifically, in R2,
we have easy problems with 100 obstacles and ζobs = 0.33, and hard
problems with 1000 obstacles and ζobs = 0.75. In R4 we maintain the
same values for ζobs, but use 500 and 3000 obstacles for easy and hard
problems, respectively. For each problem setting (R2/R4; easy/hard)
we generate 30 different random scenarios and evaluate each strategy
with the same set of samples on each of them. Each random scenario
has a different set of solutions, so we show a representative result for
each problem setting in Fig. 4.6.
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Figure 4.7: We show results on
2 manipulation problems for
vertex batching edge batch-
ing, hybrid batching and
BIT∗. For each problem the
goal configuration of the right
arm is rendered translucent.
Both of the problems are fairly
constrained and non-trivial. The
problem depicted in ((c)) has a
large clear area in front of the
starting configuration, which
may allow for a long edge. This
could explain the better perfor-
mance of vertex batching. The
naive strategy takes 25s for ((b))
and 44s for ((d)) respectively.

The results align well with our intuition about the relative per-
formance of the densification strategies on easy and hard problems.
Note that the naive strategy of searching G with A∗ directly requires
considerably more time to report the optimum solution than any other
strategy. We mention the numbers in the accompanying caption of
Fig. 4.6 but avoid plotting them so as not to stretch the figures. Note
the reasonable performance of hybrid batching across problems and
difficulty levels.

4.5.2 Manipulation planning problems

We also run simulated experiments on HERB [Srinivasa et al., 2010],
a mobile manipulator designed and built by the Personal Robotics
Lab at Carnegie Mellon University. The planning problems are for the
7-DOF right arm, on the problem scenarios shown in Fig. 4.7. We use
a roadmap of 105 vertices defined using a Halton sequence S which
was generated using the first 7 prime numbers. In addition to the
batching strategies, we also evaluate the performance of BIT∗, using
the same set of samples S. BIT∗ had been shown to achieve anytime
performance superior to contemporary anytime algorithms. The hard-
ness of the problems in terms of clearance is difficult to visualize in
terms of the C-space of the arm, but the goal regions are considerably
constrained. As our results show ( Fig. 4.7), all densification strategies
solve the difficult planning problem in reasonable time, and generally
outperform the BIT* strategy on the same set of samples.

4.6 Discussion

In this chapter we presented, analyzed and implemented several
densification strategies for anytime geometric motion planning on
large dense roadmaps. We provided theoretical motivation for these
densification techniques, and showed that they outperform the naive
search significantly on difficult planning problems.

In this work we demonstrate our analysis for the case where the set
of samples is generated from a low-dispersion deterministic sequence.
A natural extension is to provide a similar analysis for a sequence
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of random i.i.d. samples. Here, f(|V |) = O (log |V |) [Karaman and
Frazzoli, 2010] instead of O(|V |). When out of the starvation regions
we would like to bound the quality obtained similar to the bounds
provided by (Eq. 2.1). A starting point would be to leverage recent
results [Dobson et al., 2015] for Random Geometric Graphs under
expectation, albeit for a specific radius r.

Another question we wish to pursue is alternative possibilities
to traverse the subgraph space of G. As depicted in Fig. 4.1, our
densification strategies are essentially ways to traverse this space . We
discuss three techniques that traverse relevant boundaries of the space.
But there are innumerable trajectories that a strategy can follow to
reach the optimum. It would be interesting to compare our current
batching methods, both theoretically and practically, to those that go
through the interior of the space.



5
Search over Configuration Space Beliefs

(This chapter is based on work presented in [Choudhury et al., 2016b].)
In this chapter we develop an algorithm for anytime planning on

roadmaps that uses a model of the configuration space to search for
successively shorter paths that are likely to be feasible. It does so
by searching for paths that are pareto-optimal in path length and
collision probability, hence we call it Pareto-Optimal Motion Planner
(POMP). As mentioned in chapter 3, we propose using POMP for
searching each individual subgraph generated by the specific densifica-
tion strategy used.

N.B - For this specific chapter we have a similar problem setting
to that which we have been considering all this while, i.e. we are
searching for a sequence of successively shorter feasible paths in a
roadmap graph G = (V ,E) embedded in X . We will sometimes use
the symbol γ to refer to a path, interchangeably with γ. For this
specific chapter we do not assume the roadmaps are large and dense,
as we allow the densification strategy to handle that scenario.

5.1 Configuration Space Beliefs

For high dimensional problems, maintaining an explicit representation
of Xobs (and hence Xfree) is not computationally feasible. We are
interested in regimes where we have an implicit representation in the
form of a collision checker, which takes as input a configuration q ∈ X
and outputs which of the two sets Xobs or Xfree the configuration
belongs to. As mentioned in chapter 1, we focus on problem domains
where performing each check is computationally expensive.

Collision
Checker

C-Space
Model

ResultIs

Result

Figure 5.1: The configuration
space belief model is updated
with the results of collision
checks and is queried to obtain
the collision probability of an
unknown configuration.

We observe immediately that the collision checker is an expensive
but perfect binary classifier, classifying a queried configuration into
Xobs or Xfree. We can then formulate an inexpensive but uncertain
model Φ that takes in a configuration and outputs its belief that the
query is collision-free, represented as ρ : X 7→ [0, 1]. We can build and



anytime geometric motion planning on large dense roadmaps 33

(a) Problem Environment (b) Model - Iteration 4 (c) Model - Iteration 7 (d) Model - First Path

(e) No Model - Iteration 4 (f) No Model - Iteration 10 (g) No Model - Iteration 15 (h) No Model - First Path
Figure 5.2: An illustration of
the benefit of using configura-
tion space beliefs. The upper
and lower rows show runs of
POMP on a 2D planning prob-
lem, with some finite model
radius and zero radius respec-
tively. The heatmap represents
the belief model with green rep-
resenting the belief of being free,
and orange the belief of being
in collision. The thin grey edges
are unevaluated. The dashed
edges are being evaluated. Thick
grey edges are evaluated free,
and thick magenta edges are
evaluated in collision. The blue
edges represent the first feasible
path in each case. Using the
belief model, POMP requires 10
evaluations for the first feasible
path, while without the model,
it requires 18 evaluations.

update this model using a black-box learner [Pan et al., 2013]. Given
a query q, we now have the choice of either inexpensively evaluating
ρ(q) from the model Φ, or expensively querying the collision checker.
A representation is shown in Figure 5.1. A number of different models
exist in the literature [Burns and Brock, 2005a, Knepper and Ma-
son, 2012, Pan et al., 2013] which could be used. We utilize a k-NN
method similar to one used previously [Pan et al., 2013].

When qi ∈ X is evaluated for feasibility, we obtain F (qi) = 0 if qi ∈
Xfree or 1 otherwise. Then we add (qi,F (qi)) to the model. Given
some new query point q, we obtain the k closest known instances to q,
say {q1, q2 . . . qk}, and then compute a weighted sum of F (qi) where a
weight wi = 1

||q−qi|| . Therefore,

P[q in collision ] = 1− ρ(q) = w.F
|w| (5.1)

where w = [w1,w2 . . . wk]
T and F = [F (q1),F (q2) . . . F (qk)]

T .
In principle, the k-NN lookup is O(log N) while a collision check

is O(1). However, for the roadmaps that we tested on, the time for a
single collision check was significantly higher than for a model lookup.
Asymptotically, the lookup time will exceed check time, which may
happen in certain kinds of problems.
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5.2 Edge Weights

We define two edge weight functions. The first is wl : E → [0,∞) and
measures the length of an edge based on our distance metric on X .
For edges that are evaluated to be in collision, the weight is set to ∞.
The path length is represented as L(γ) =

∑
e∈γ

wl(e).

The second is wm : E → [0,∞), and it relates to the probability
of the edge to be collision-free based on our model M . Specifically,
wm(e) = −log(ρ(e)), where ρ(e) is the probability of e to be collision-
free. Note that a known-free edge has wm(e) = 0 and a known-
colliding edge has wm(e) =∞. If we assume conditional independence
of configurations given the edge, we can write the log-probability of a
path being in collision, M (γ), in the same summation form as L(γ):

− log P(γ ∈ Xfree) = −log
∏
e∈γ

ρ(e) =
∑
e∈γ

wm(e) ≡M (γ) (5.2)

We will refer to this M as the collision measure of the path. Ensuring
that both M(γ) and L(γ) are additive over edges enables efficient
searches.

5.3 Weight Constrained Shortest Path

Our first objective is to obtain some initial feasible path quickly,
irrespective of path length. We search for paths that are most likely
to be free according to our model. Once we have a feasible path, we
search only for paths of shorter length, based on their likelihood of
being free. Specifically, we want to search over paths most likely to
be free, with a length lower than some upper bound, where the bound
reduces over time, with each feasible solution. One way to represent
this is by repeatedly solving

γ̂ = argmin
γ

M (γ)

subject to L(γ) < L∗
(5.3)

and subsequently evaluating the returned solution for feasibility. The
initial bound L∗0 = ∞, after which L∗1 = L(γ̂0), where γ̂0 is the first
feasible solution, and L∗2 = L(γ̂1) and so on. Therefore, the first
iteration of the problem is an unconstrained shortest path problem.
For a particular finite upper bound, however, this problem is an
instance of the Weight Constrained Shortest Path (WCSP) problem.

Intuitively, it seems that this is how we want to formulate the
problem. However, a closer look will reveal that this formulation is
neither the most efficient nor the most appropriate. This will lead us
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to the eventual formulation that we present. We visualize paths on
a 2D plane in terms of their two weights - the path length L and the
collision measure M . Each path is a point on this plane, as shown in
Fig. 5.3.

Path
Length

Collision Measure

L*

Figure 5.3: The LazyWCSP
algorithm performs a horizon-
tal sweep on the length(L) -
measure(M) plane to select the
left-most point. If each point
chosen is feasible, and there are
no updates to the model, this
sweeps out the Pareto frontier
of valid points, with respect to
initial weights.

For such bicriteria problems, a point (path) is strictly dominated by
another point if it is worse off in both criteria. For instance, if there
are two points τ , τ ′ such that L(τ ′) ≥ L(τ ) and M (τ ′) ≥ M (τ ), then
τ strictly dominates τ ′, i.e. τ � τ ′. A point is Pareto optimal if it is
not strictly dominated by any other point. The set of Pareto optimal
points is known as the Pareto frontier.

Consider a simple approach that uses WCSP and evaluates paths
lazily, updating the model Φ after each search and solving the updated
problem defined in 5.3. Let us call this the LazyWCSP method. It
repeatedly performs a horizontal sweep over the points in the plane
under some horizontal line, the upper length bound (initially there is
no line as the bound is ∞). It selects the left-most one (with minimum
collision measure) to evaluate, say γi. If the path is infeasible, it is
moved infinitely to the right, and if feasible, it is moved left onto the
y-axis, with the collision measure becoming 0. The upper bound L∗

is now L(γi), represented by a horizontal line. The collision data of
previously unknown configurations updates the model Φ, which in
turn updates the x-coordinate of certain points.

Recall that the search for the first feasible path γ̂0 is an uncon-
strained shortest path problem with edge weights defined by wm and
lazy evaluation of paths [Nielsen and Kavraki, 2000]. For the subse-
quent paths, we have to repeatedly solve the WCSP problem lazily.

There are two major issues with that approach. Firstly, from a
practical viewpoint, the WCSP problem is known NP-Hard. There
are algorithms for solving it in pseudopolynomial time, by dynamic
programming [Desrochers and Soumis, 1988] and Lagrangean relax-
ation [Handler and Zang, 1980], but it is highly inefficient to do so
repeatedly. Secondly, and more fundamentally, the progress of Lazy-
WCSP does not appropriately address our goal of trading off between
path length and collision measure. Consider the scenarios in Fig. 5.4.
In Fig. 5.4b, LazyWCSP would evaluate a point γ1 of marginally lower
collision measure and higher path length than another one, γ2. In the
general case, where they may be many such points, as in Fig. 5.4c,
this leads to prioritizing several paths that are less promising, i.e. that
have a lower gain in length with respect to collision measure.

5.4 Convex Hull of the Pareto Frontier

Let us assume that we do not update the model Φ between successive
searches; the x-coordinates of unevaluated paths do not change. If
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Figure 5.4: Two problematic
scenarios for using LazyWCSP.
A toy case is shown in (a), along
with two possible corresponding
length(L) - measure(M) plots.
In (b), a small decrement in
collision measure for γ1 is prior-
itized over a larger decrement
in path length for γ2. In (c), all
points above the blue line and
to the left of γ2 are evaluated
before the more promising γ2.
These points correspond to
several paths through A.

an evaluated path is free, it becomes the best feasible solution, oth-
erwise it is removed. Under this assumption, LazyWCSP traces out
the Pareto frontier of the feasible paths with respect to their initial
coordinates, as shown in Figure Fig. 5.3. In both of the examples in
Figure Fig. 5.4, this defers the evaluation of the more promising γ2.

We can control the tradeoff between the two weights by defining the
objective function as a convex combination of the two weights,

Jα(γ) = αL(γ) + (1− α)M (γ) , α ∈ [0, 1] (5.4)

This is the key idea behind our algorithm POMP, or Pareto-
Optimal Motion Planner (Algorithm 5.1). Minimizing Jα for various
choices of α, traces out the convex hull of the Pareto frontier of the
initial coordinates, as shown in Fig. 5.5a. The α parameter represents
the tradeoff between the weights. Also, optimizing over Jα implicitly
satisfies the constraint on L. If the current solution is γi, then for any
path γ′

Jα(γ′) < Jα(γi)

=⇒ αL(γ′) + (1− α)M (γ′) < αL(γi) [ as M (γi) = 0]
=⇒ L(γ′) < L(γi)

The path objective function is additive over edges, so each iteration of
the algorithm is now a shortest path search problem. The edge weight
for each search is

wαj (e) = αwl(e) + (1− α)wm(e) , α ∈ [0, 1] (5.5)

When the previous assumption is relaxed, i.e. when collision measures
of paths are updated after each search, the corresponding points
move and the Pareto frontier moves as well. POMP begins with
α = 0 and the upper bound L∗ = ∞, as stated before. After the first
feasible solution is obtained, α is increased, and for each value of α,
the shortest path search is carried out with the weight function wαj .
Either POMP finds a feasible path, and the next search uses this path
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Figure 5.5: The key insights
to our algorithm. As shown in
(a), under the assumption of
no model updates, the convex
hull of the Pareto frontier of the
paths is traced out for different
values of α. The actual be-
haviour of POMP in the absence
of that assumption is shown
through (b) - (d). The diagonal
sweep corresponds to searching
with Jα, and the first point
found in the sweep corresponds
to the path that minimizes
Jα(γ). When a path is eval-
uated, other paths may have
their M -values increased or

decreased, and may be
deleted if they share infeasible
edges with it.

as the current solution, or it does not, and the previous solution is
returned. In the latter case, there are no further updates the model
can make (as the path returned is fully evaluated), and no other paths
can be found with the current α. Therefore the search is restarted
after increasing α. A visual description of an intermediate search of
POMP is in Figure 5.5.

POMP is outlined in Algorithm 5.1. Algorithm 5.2 is a helper
method for lazily evaluating paths. The term yield is used instead of
return to emphasize that the algorithm has anytime behaviour.

Algorithm 5.1: POMP
Input : G = (V ,E), wl, wm, s, t, Φ

1: repeat
2: γ0 ← Dijkstra_Path(G,wm)
3: LazyEvalPath(G, γ0, Φ)

4: if γ0 ∈ Cfree then
5: yield γ0
6: end if
7: until γ0 ∈ Cfree
8: γcurr = γ0
9: α← α′

10: while α ≤ 1 do
11: wαj (e) = αwl(e) + (1− α)wm(e), ∀ e
12: γnew ← AStar_Path(G,wαj )
13: LazyEvalPath(G, γnew, Φ)

14: if γnew 6= γcurr and γnew ∈ Cfree then
15: γcurr ← γnew
16: yield γcurr
17: end if
18: Increment α
19: end while
20: γshortest ← γcurr
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Algorithm 5.2: LazyEvalPath
Input : G = (V ,E),γ, Φ

1: for e ∈ γ do
2: if e is unevaluated then
3: Evaluate(e)
4: Update Φ with collision data for e. This updates wm for all

unevaluated edges.
5: if e ∈ Cobs then
6: wl(e),wm(e)←∞ . Known blocked edge.
7: return γ ∈ Cobs
8: else
9: wm(e)← 0 . Known free edge.

10: end if
11: end if
12: end for
13: return γ ∈ Cfree

5.5 Minimizing Expected Path Length

We will show that the behaviour of POMP is equivalent to minimizing
expected path length, with some approximation. This formulation has
been used in similar contexts [Missiuro and Roy, 2006].

Let Ĵ(γ) = E[J(γ)] be the expected length of path γ. By the
linearity of expectation,

Ĵ(γ) =
∑
e∈γ

ŵj(e)

where ŵj(e) is the expected length of e. For any edge e, we use a
model where the length of the edge, if free, is wl(e), and if in collision
is β, where β is a penalty factor (β > 0). Though we require γ ∈ Xfree,
we do not consider a wl(e)/∞ length model as that would make
expected lengths infinite for any unevaluated edges. Because the
algorithm eventually evaluates edges, no infeasible paths will be
reported as solutions. Therefore,

ŵj(e) = ρ(e)wl(e) + (1− ρ(e))β

using the standard notion of expectation over a single event. By the
Taylor series expansion,

log(ρ(e)) = ρ(e)− 1− (ρ(e)− 1)2

2 + . . .

=⇒ −log(ρ(e)) ≈ (1− ρ(e)) [neglecting other terms]

Therefore, we obtain,

ŵj(e) = wl(e)ρ(e)− βlog(ρ(e)) ≡ wl(e) +
β

ρ(e)
wm(e) (5.6)
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(a) P1 (b) P2 (c) P3 (d) P4 (e) P5 (f) P6
Figure 5.6: The test cases we
use for our experiments. We
name them P1 through P6
for reference. The planning is
for the right arm of the robot,
which is at the starting configu-
ration in each case. The translu-
cent rendered arm represents
the desired goal configuration.

Compare this to wαj (e) in Eq. 5.5

wαj (e) = αwl(e) + (1− α)wm(e)

≡ wl(e) +
(1− α)
α

wm(e) [for minimizing]

Therefore, the effect of (1−α)
α is equivalent to that of β

ρ(e)
as β goes

from β′ � 0 to 0 and α correspondingly goes from 0 to 1.
Intuitively, β represents the penalty factor that POMP assigns to

additional collision checks. Reducing the penalty factor β from β′ � 0
to 0 is analogous to increasing α in the earlier formulation from 0 to 1.
Both operations represent the increased risk of collision the algorithm
is willing to take while searching for edges that, if free, may potentially
lead to shorter paths. It should also be noted that at the stage where
α = 1 =⇒ β = 0, POMP is equivalent to LazyPRM [Bohlin and
Kavraki, 2000].

5.6 Experiments

We evaluate POMP through a number of simulated experiments on
HERB [Srinivasa et al., 2010], a mobile manipulator designed and
built by the Personal Robotics Lab at Carnegie Mellon University. We
consider two hypotheses - the benefit of the model for computing the
first solution, and the anytime performance.

Our experiments are run on 6 different planning problems for the
7-DOF right arm, shown in Fig. 5.6. The first three problems - P1,
P2, P3 - are used for evaluating the first hypothesis. They have goal
configurations with significant visibility constraints. The next three
problems - P4, P5, P6 - are used for the second hypothesis. Their goal
configurations are less constrained than the first set. Thus they have
more feasible solutions and better demonstrate anytime behaviour.

For each problem, we test POMP over 50 different roadmaps. The
distribution of the nodes is generated by Halton sequences [Halton,
1964], which have low dispersion, and the node positions are offset by
random amounts. The roadmaps have approximately 14000 nodes, and
the r-disk radius for connectivity is 0.3 radians.
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Figure 5.7: A comparison of
our algorithm POMP with
LazyPRM and RRTConnect,
in terms of the average plan-
ning time and collision checks
required for computing the first
feasible path. POMP requires
far fewer checks than RRTCon-
nect, but spends additional time
searching and updating the
roadmap.
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Figure 5.8: POMP with a
model reports failure faster than
without a model, and LazyPRM,
for the same roadmaps and
problem instances. This is aggre-
gated over all failure cases from
P1 through P3.

Using explicit roadmaps allows us to eliminate all nodes and edges
which have configurations in self collision in a pre-processing step,
thereby requiring us to only evaluate environmental collisions at
runtime. We utilize the same set of default model parameters for each
run of POMP - the joint angle resolution is 0.04 radians, the k for
k-NN lookup is 15, the prior belief is 0.5, and α increases in steps of
0.1.

5.6.1 Benefit of model for first feasible path

We evaluate the planning time and the number of collision checks
required to obtain a feasible solution. We compare against the widely
used LazyPRM [Bohlin and Kavraki, 2000] and RRT-Connect [Kuffner
and LaValle, 2000]. For RRTConnect, we use the standard OMPL [Su-
can et al., 2012] implementation. For LazyPRM, we use the search of
POMP with α = 1 on the same roadmaps as POMP. We also com-
pare against a variant of POMP that does not use a belief model -
it assigns the same probability of collision to all unknown configura-
tions and only sets them to 0 or 1 when they are evaluated. This is
to demonstrate the advantage of the model-based heuristic. We name
these variants ‘With Model’ and ‘Without Model’.

Fig. 5.7 shows the average collision checks and planning time to
compute the first feasible solution for the various algorithms. This
is for those roadmaps that have at least one feasible solution for the
problem. A second perspective is shown in Fig. 5.9, which shows the
success rate of the methods with time and checks. This plot considers
all of the 50 roadmaps, whether they have a feasible solution or not,
and so the success rate of the methods using them (With Model,
Without Model, LazyPRM) all have the same upper bound.

The figures show that over all problems, POMP with a belief model
shows superior average-case performance. Furthermore, the length of
the first feasible path returned by POMP is better than RRTConnect.
For the three problems, the average length of feasible paths computed
by POMP is approximately 60% that of paths computed by RRT-



anytime geometric motion planning on large dense roadmaps 41

0 50 100 150 200 250 300 350 400 450

Collision Checks for first feasible path

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

a
te

LazyPRM
RRTConnect
Without Model
With Model

(a) P1

0 100 200 300 400 500

Collision Checks for first feasible path

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

a
te

LazyPRM
RRTConnect
Without Model
With Model

(b) P2

0 100 200 300 400 500

Collision Checks for first feasible path

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

a
te

LazyPRM
RRTConnect
Without Model
With Model

(c) P3

0 1 2 3 4 5

Planning Time for first feasible path (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

a
te

LazyPRM
RRTConnect
Without Model
With Model

(d) P1

0 1 2 3 4 5 6 7

Planning Time for first feasible path (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

a
te

LazyPRM
RRTConnect
Without Model
With Model

(e) P2

0 2 4 6 8 10

Planning Time for first feasible path (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

LazyPRM
RRTConnect
Without Model
With Model

(f) P3
Figure 5.9: These plots shows
how the collision checks and
planning time required varies
with the percentage of successful
runs for each algorithm. Note
that With Model, Without
Model and LazyPRM all run on
the same roadmap, and would
all report a feasible solution if
one existed on the roadmap. In
each case, the x-axis is cut off
after all runs of With Model, on
roadmaps with feasible solutions,
have concluded. RRTConnect
would of course keep searching
till it found a solution, and
asymptotically its success rate
would be 1.

Connect. Additionally, for cases where the roadmap has no feasible
solution, POMP using a model reports failure more quickly than the
variant without a model and LazyPRM (Fig. 5.8).

An interesting observation from Fig. 5.7 is that though RRTCon-
nect has an order of magnitude more collision checks than POMP, the
planning time is still comparable. A qualitative breakdown of the tim-
ing shows that POMP spends far less time than RRT-Connect actually
doing collision checking. However, it also has far greater overhead for
searching the roadmap for candidate paths and updating the collision
measure of edges after collision tests.

5.6.2 Anytime behaviour of POMP

We also evaluate the anytime performance of finding shorter feasible
paths over time, up to the optimal path in the roamdap. We compare
against BIT∗ [Gammell et al., 2014b] (OMPL implementation), which
has demonstrated an anytime performance superior to others. We run
tests for 3 different problems P4, P5 and P6, and demonstrate the
results in Fig. 5.10. Note that POMP works with only the roadmap
provided, without any incremental sampling or rewiring, so the path
length does not improve once the shortest feasible path has been
obtained. BIT* adds more samples, however, and can continue to
obtain improved paths with time.

5.7 Discussion

Given a roadmap constructed apriori, and a black-box configuration
space model, POMP efficiently searches for shorter feasible paths
in an anytime fashion. We thoroughly evaluated POMP for a set
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Figure 5.10: A comparison of
the anytime performance of
POMP with that of BIT∗. This
is done on 3 separate problems
that better demonstrate any-
time behaviour than the ones
used earlier. The dotted line
begins after 50% of the runs
have found a solution. The solid
line begins after all runs have
found a solution. The flattening
of the lines for POMP happens
after the final roadmap finds
the shortest path, as there is no
further scope of improvement.

of roadmaps and model parameters and observed consistently good
results in comparison to the state of the art. We have shown results
for single-query problems, but POMP is also well-suited to multi-query
problem instances that enable model re-use.

Like other PRM-based methods, POMP encounters the issue of
there not being any feasible path on the roadmap for a particular
environment and planning problem. The fast reporting of failure
favours beginning with sparse roadmaps and incrementally densifying
when no feasible path is found. Given that some approximate model
of the world would already be available, techniques like utility-guided
sampling [Burns and Brock, 2005b] could be used to efficiently sample
new points in areas where they are likely to be beneficial.

For our implementation of POMP, the C-space belief model uses
a simple but effective k-nearest neighbour lookup. We have previ-
ously referred to similar models in the literature. Other interesting
approaches would be reasoning about the manifolds of the sample
points [Salzman et al., 2013] and using persistent homology for occu-
pancy maps [Bhattacharya et al., 2015].



6
Conclusion

In this MS thesis, we proposed an algorithmic framework for anytime
geometric motion planning on large, dense roamdaps. Specifically,

This thesis proposes an algorithmic framework for two-level
anytime geometric motion planning on large, dense roadmaps
by generating subgraphs using densification and searching each
subgraph using POMP

We justified the benefits of using a roadmap that is very large
and dense, along with some heuristic search techniques and lazy eval-
uations. In Sec. 4.6 We cast the problem of anytime planning on
a large, dense roadmap to searching for the shortest feasible path
over a sequence of subgraphs of the roadmap, using some densifi-
cation strategy. When the set of samples is generated from a low-
dispersion quasi-random Halton sequence, our analysis shows effort-
vs-suboptimality bounds over the increasingly dense subgraphs of the
complete roadmap.

In Sec. 5.7 we proposed an algorithm for anytime planning on a
roadmap (of reasonable size) called Pareto-Optimal Motion Planner
(POMP) that maintains a belief over configuration space and searches
for paths Pareto-optimal in path length and collision measure. We par-
ticulary advocate for using POMP as the underlying search algorithm
used in conjunction with a densification strategy.

POMP is well-suited for being run several times on the same con-
figuration space and obstacle setting as the C-space belief model gets
more and more informed as more edges are evaluated. In practice, us-
ing the Geometric Near-neighbour Access Tree or GNAT [Brin, 1995]
datastructure, the model updates become reasonably efficient and the
increased information from them is typically worth the computational
cost of updation. The GNAT data structure is optimized for fast
querying which we typically plan to do more than updation via colli-
sion checks. The fail-fast nature of POMP is useful for when the next
batch does not have an improved feasible solution. Using densification
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with POMP leads to an algorithm with multi-level anytime behaviour
which is even better for the effort-to-quality tradeoff. POMP itself has
no sub-optimality guarantees for intermediate solutions but as it ob-
tains the shortest feasible path for the given roadmap that it searches,
the overall guarantees via densification do stand.

6.1 Future Work

An immediate direction of future work would be to implement anytime
roadmap planners which use densification strategies and POMP as
the underlying search algorithm, and benchmark it against the same
densification strategies with a different search algorithm (the one used
in chapter 4). The behaviour of POMP as the batches get larger and
larger, and the belief model gets more and more data points, would
also be interesting to observe and analyse.

In the roadmap densification regime, at the end of each batch, the
samples to be added for the next batch are already decided beforehand
based on the generating sequence. However, as the belief model is
continuously being updated, it induces a prior over the samples yet
to be added. Whether this prior can be useful while adding the next
batch is another interesting question to explore.

6.2 Final Remarks

Despite the recent advances in deep reinforcement learning for con-
trol and the advent of sensorimotor approaches [Levine et al., 2016,
Pinto and Gupta, 2016], a large number of industrial applications for
manipulation and mobile robotics rely on efficient motion planning
algorithms. While theoretical properties like asymptotic optimality
and probabilistic completeness are interesting and informative, we
would like to have good quality solutions over a range of problems and
be able to analyse the finite-time behaviour of our algorithms. With
this thesis, we have made some amount of progress towards that end.
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